Identifier
- St001018: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[1,0]=>1
[1,0,1,0]=>2
[1,1,0,0]=>2
[1,0,1,0,1,0]=>3
[1,0,1,1,0,0]=>3
[1,1,0,0,1,0]=>3
[1,1,0,1,0,0]=>4
[1,1,1,0,0,0]=>3
[1,0,1,0,1,0,1,0]=>4
[1,0,1,0,1,1,0,0]=>4
[1,0,1,1,0,0,1,0]=>4
[1,0,1,1,0,1,0,0]=>6
[1,0,1,1,1,0,0,0]=>4
[1,1,0,0,1,0,1,0]=>4
[1,1,0,0,1,1,0,0]=>4
[1,1,0,1,0,0,1,0]=>5
[1,1,0,1,0,1,0,0]=>5
[1,1,0,1,1,0,0,0]=>5
[1,1,1,0,0,0,1,0]=>4
[1,1,1,0,0,1,0,0]=>5
[1,1,1,0,1,0,0,0]=>6
[1,1,1,1,0,0,0,0]=>4
[1,0,1,0,1,0,1,0,1,0]=>5
[1,0,1,0,1,0,1,1,0,0]=>5
[1,0,1,0,1,1,0,0,1,0]=>5
[1,0,1,0,1,1,0,1,0,0]=>8
[1,0,1,0,1,1,1,0,0,0]=>5
[1,0,1,1,0,0,1,0,1,0]=>5
[1,0,1,1,0,0,1,1,0,0]=>5
[1,0,1,1,0,1,0,0,1,0]=>7
[1,0,1,1,0,1,0,1,0,0]=>6
[1,0,1,1,0,1,1,0,0,0]=>7
[1,0,1,1,1,0,0,0,1,0]=>5
[1,0,1,1,1,0,0,1,0,0]=>6
[1,0,1,1,1,0,1,0,0,0]=>9
[1,0,1,1,1,1,0,0,0,0]=>5
[1,1,0,0,1,0,1,0,1,0]=>5
[1,1,0,0,1,0,1,1,0,0]=>5
[1,1,0,0,1,1,0,0,1,0]=>5
[1,1,0,0,1,1,0,1,0,0]=>7
[1,1,0,0,1,1,1,0,0,0]=>5
[1,1,0,1,0,0,1,0,1,0]=>6
[1,1,0,1,0,0,1,1,0,0]=>6
[1,1,0,1,0,1,0,0,1,0]=>6
[1,1,0,1,0,1,0,1,0,0]=>6
[1,1,0,1,0,1,1,0,0,0]=>6
[1,1,0,1,1,0,0,0,1,0]=>6
[1,1,0,1,1,0,0,1,0,0]=>8
[1,1,0,1,1,0,1,0,0,0]=>8
[1,1,0,1,1,1,0,0,0,0]=>6
[1,1,1,0,0,0,1,0,1,0]=>5
[1,1,1,0,0,0,1,1,0,0]=>5
[1,1,1,0,0,1,0,0,1,0]=>6
[1,1,1,0,0,1,0,1,0,0]=>6
[1,1,1,0,0,1,1,0,0,0]=>6
[1,1,1,0,1,0,0,0,1,0]=>7
[1,1,1,0,1,0,0,1,0,0]=>7
[1,1,1,0,1,0,1,0,0,0]=>7
[1,1,1,0,1,1,0,0,0,0]=>7
[1,1,1,1,0,0,0,0,1,0]=>5
[1,1,1,1,0,0,0,1,0,0]=>6
[1,1,1,1,0,0,1,0,0,0]=>7
[1,1,1,1,0,1,0,0,0,0]=>8
[1,1,1,1,1,0,0,0,0,0]=>5
[1,0,1,0,1,0,1,0,1,0,1,0]=>6
[1,0,1,0,1,0,1,0,1,1,0,0]=>6
[1,0,1,0,1,0,1,1,0,0,1,0]=>6
[1,0,1,0,1,0,1,1,0,1,0,0]=>10
[1,0,1,0,1,0,1,1,1,0,0,0]=>6
[1,0,1,0,1,1,0,0,1,0,1,0]=>6
[1,0,1,0,1,1,0,0,1,1,0,0]=>6
[1,0,1,0,1,1,0,1,0,0,1,0]=>9
[1,0,1,0,1,1,0,1,0,1,0,0]=>7
[1,0,1,0,1,1,0,1,1,0,0,0]=>9
[1,0,1,0,1,1,1,0,0,0,1,0]=>6
[1,0,1,0,1,1,1,0,0,1,0,0]=>7
[1,0,1,0,1,1,1,0,1,0,0,0]=>12
[1,0,1,0,1,1,1,1,0,0,0,0]=>6
[1,0,1,1,0,0,1,0,1,0,1,0]=>6
[1,0,1,1,0,0,1,0,1,1,0,0]=>6
[1,0,1,1,0,0,1,1,0,0,1,0]=>6
[1,0,1,1,0,0,1,1,0,1,0,0]=>8
[1,0,1,1,0,0,1,1,1,0,0,0]=>6
[1,0,1,1,0,1,0,0,1,0,1,0]=>8
[1,0,1,1,0,1,0,0,1,1,0,0]=>8
[1,0,1,1,0,1,0,1,0,0,1,0]=>7
[1,0,1,1,0,1,0,1,0,1,0,0]=>7
[1,0,1,1,0,1,0,1,1,0,0,0]=>7
[1,0,1,1,0,1,1,0,0,0,1,0]=>8
[1,0,1,1,0,1,1,0,0,1,0,0]=>11
[1,0,1,1,0,1,1,0,1,0,0,0]=>10
[1,0,1,1,0,1,1,1,0,0,0,0]=>8
[1,0,1,1,1,0,0,0,1,0,1,0]=>6
[1,0,1,1,1,0,0,0,1,1,0,0]=>6
[1,0,1,1,1,0,0,1,0,0,1,0]=>7
[1,0,1,1,1,0,0,1,0,1,0,0]=>7
[1,0,1,1,1,0,0,1,1,0,0,0]=>7
[1,0,1,1,1,0,1,0,0,0,1,0]=>10
[1,0,1,1,1,0,1,0,0,1,0,0]=>9
[1,0,1,1,1,0,1,0,1,0,0,0]=>8
[1,0,1,1,1,0,1,1,0,0,0,0]=>10
[1,0,1,1,1,1,0,0,0,0,1,0]=>6
[1,0,1,1,1,1,0,0,0,1,0,0]=>7
[1,0,1,1,1,1,0,0,1,0,0,0]=>8
[1,0,1,1,1,1,0,1,0,0,0,0]=>12
[1,0,1,1,1,1,1,0,0,0,0,0]=>6
[1,1,0,0,1,0,1,0,1,0,1,0]=>6
[1,1,0,0,1,0,1,0,1,1,0,0]=>6
[1,1,0,0,1,0,1,1,0,0,1,0]=>6
[1,1,0,0,1,0,1,1,0,1,0,0]=>9
[1,1,0,0,1,0,1,1,1,0,0,0]=>6
[1,1,0,0,1,1,0,0,1,0,1,0]=>6
[1,1,0,0,1,1,0,0,1,1,0,0]=>6
[1,1,0,0,1,1,0,1,0,0,1,0]=>8
[1,1,0,0,1,1,0,1,0,1,0,0]=>7
[1,1,0,0,1,1,0,1,1,0,0,0]=>8
[1,1,0,0,1,1,1,0,0,0,1,0]=>6
[1,1,0,0,1,1,1,0,0,1,0,0]=>7
[1,1,0,0,1,1,1,0,1,0,0,0]=>10
[1,1,0,0,1,1,1,1,0,0,0,0]=>6
[1,1,0,1,0,0,1,0,1,0,1,0]=>7
[1,1,0,1,0,0,1,0,1,1,0,0]=>7
[1,1,0,1,0,0,1,1,0,0,1,0]=>7
[1,1,0,1,0,0,1,1,0,1,0,0]=>10
[1,1,0,1,0,0,1,1,1,0,0,0]=>7
[1,1,0,1,0,1,0,0,1,0,1,0]=>7
[1,1,0,1,0,1,0,0,1,1,0,0]=>7
[1,1,0,1,0,1,0,1,0,0,1,0]=>7
[1,1,0,1,0,1,0,1,0,1,0,0]=>8
[1,1,0,1,0,1,0,1,1,0,0,0]=>7
[1,1,0,1,0,1,1,0,0,0,1,0]=>7
[1,1,0,1,0,1,1,0,0,1,0,0]=>10
[1,1,0,1,0,1,1,0,1,0,0,0]=>9
[1,1,0,1,0,1,1,1,0,0,0,0]=>7
[1,1,0,1,1,0,0,0,1,0,1,0]=>7
[1,1,0,1,1,0,0,0,1,1,0,0]=>7
[1,1,0,1,1,0,0,1,0,0,1,0]=>9
[1,1,0,1,1,0,0,1,0,1,0,0]=>8
[1,1,0,1,1,0,0,1,1,0,0,0]=>9
[1,1,0,1,1,0,1,0,0,0,1,0]=>9
[1,1,0,1,1,0,1,0,0,1,0,0]=>8
[1,1,0,1,1,0,1,0,1,0,0,0]=>9
[1,1,0,1,1,0,1,1,0,0,0,0]=>9
[1,1,0,1,1,1,0,0,0,0,1,0]=>7
[1,1,0,1,1,1,0,0,0,1,0,0]=>8
[1,1,0,1,1,1,0,0,1,0,0,0]=>11
[1,1,0,1,1,1,0,1,0,0,0,0]=>11
[1,1,0,1,1,1,1,0,0,0,0,0]=>7
[1,1,1,0,0,0,1,0,1,0,1,0]=>6
[1,1,1,0,0,0,1,0,1,1,0,0]=>6
[1,1,1,0,0,0,1,1,0,0,1,0]=>6
[1,1,1,0,0,0,1,1,0,1,0,0]=>8
[1,1,1,0,0,0,1,1,1,0,0,0]=>6
[1,1,1,0,0,1,0,0,1,0,1,0]=>7
[1,1,1,0,0,1,0,0,1,1,0,0]=>7
[1,1,1,0,0,1,0,1,0,0,1,0]=>7
[1,1,1,0,0,1,0,1,0,1,0,0]=>7
[1,1,1,0,0,1,0,1,1,0,0,0]=>7
[1,1,1,0,0,1,1,0,0,0,1,0]=>7
[1,1,1,0,0,1,1,0,0,1,0,0]=>9
[1,1,1,0,0,1,1,0,1,0,0,0]=>9
[1,1,1,0,0,1,1,1,0,0,0,0]=>7
[1,1,1,0,1,0,0,0,1,0,1,0]=>8
[1,1,1,0,1,0,0,0,1,1,0,0]=>8
[1,1,1,0,1,0,0,1,0,0,1,0]=>8
[1,1,1,0,1,0,0,1,0,1,0,0]=>8
[1,1,1,0,1,0,0,1,1,0,0,0]=>8
[1,1,1,0,1,0,1,0,0,0,1,0]=>8
[1,1,1,0,1,0,1,0,0,1,0,0]=>8
[1,1,1,0,1,0,1,0,1,0,0,0]=>8
[1,1,1,0,1,0,1,1,0,0,0,0]=>8
[1,1,1,0,1,1,0,0,0,0,1,0]=>8
[1,1,1,0,1,1,0,0,0,1,0,0]=>10
[1,1,1,0,1,1,0,0,1,0,0,0]=>10
[1,1,1,0,1,1,0,1,0,0,0,0]=>10
[1,1,1,0,1,1,1,0,0,0,0,0]=>8
[1,1,1,1,0,0,0,0,1,0,1,0]=>6
[1,1,1,1,0,0,0,0,1,1,0,0]=>6
[1,1,1,1,0,0,0,1,0,0,1,0]=>7
[1,1,1,1,0,0,0,1,0,1,0,0]=>7
[1,1,1,1,0,0,0,1,1,0,0,0]=>7
[1,1,1,1,0,0,1,0,0,0,1,0]=>8
[1,1,1,1,0,0,1,0,0,1,0,0]=>8
[1,1,1,1,0,0,1,0,1,0,0,0]=>8
[1,1,1,1,0,0,1,1,0,0,0,0]=>8
[1,1,1,1,0,1,0,0,0,0,1,0]=>9
[1,1,1,1,0,1,0,0,0,1,0,0]=>9
[1,1,1,1,0,1,0,0,1,0,0,0]=>9
[1,1,1,1,0,1,0,1,0,0,0,0]=>9
[1,1,1,1,0,1,1,0,0,0,0,0]=>9
[1,1,1,1,1,0,0,0,0,0,1,0]=>6
[1,1,1,1,1,0,0,0,0,1,0,0]=>7
[1,1,1,1,1,0,0,0,1,0,0,0]=>8
[1,1,1,1,1,0,0,1,0,0,0,0]=>9
[1,1,1,1,1,0,1,0,0,0,0,0]=>10
[1,1,1,1,1,1,0,0,0,0,0,0]=>6
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
Sum of projective dimension of the indecomposable injective modules of the Nakayama algebra corresponding to the Dyck path.
Code
DeclareOperation("Sumprojdiminj", [IsList]); InstallMethod(Sumprojdiminj, "for a representation of a quiver", [IsList],0,function(L) local list, n, temp1, Liste_d, j, i, k, r, kk; list:=L; A:=NakayamaAlgebra(GF(3),list); R:=IndecInjectiveModules(A); temp2:=[];for i in R do Append(temp2,[ProjDimensionOfModule(i,1000)]);od; return(Sum(temp2)); end );
Created
Oct 30, 2017 at 10:52 by Rene Marczinzik
Updated
Oct 30, 2017 at 10:52 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!