Identifier
- St001023: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[1,0]=>2
[1,0,1,0]=>3
[1,1,0,0]=>3
[1,0,1,0,1,0]=>4
[1,0,1,1,0,0]=>4
[1,1,0,0,1,0]=>4
[1,1,0,1,0,0]=>4
[1,1,1,0,0,0]=>4
[1,0,1,0,1,0,1,0]=>4
[1,0,1,0,1,1,0,0]=>5
[1,0,1,1,0,0,1,0]=>5
[1,0,1,1,0,1,0,0]=>5
[1,0,1,1,1,0,0,0]=>5
[1,1,0,0,1,0,1,0]=>5
[1,1,0,0,1,1,0,0]=>5
[1,1,0,1,0,0,1,0]=>5
[1,1,0,1,0,1,0,0]=>5
[1,1,0,1,1,0,0,0]=>5
[1,1,1,0,0,0,1,0]=>5
[1,1,1,0,0,1,0,0]=>5
[1,1,1,0,1,0,0,0]=>5
[1,1,1,1,0,0,0,0]=>5
[1,0,1,0,1,0,1,0,1,0]=>4
[1,0,1,0,1,0,1,1,0,0]=>5
[1,0,1,0,1,1,0,0,1,0]=>6
[1,0,1,0,1,1,0,1,0,0]=>5
[1,0,1,0,1,1,1,0,0,0]=>6
[1,0,1,1,0,0,1,0,1,0]=>6
[1,0,1,1,0,0,1,1,0,0]=>6
[1,0,1,1,0,1,0,0,1,0]=>5
[1,0,1,1,0,1,0,1,0,0]=>5
[1,0,1,1,0,1,1,0,0,0]=>6
[1,0,1,1,1,0,0,0,1,0]=>6
[1,0,1,1,1,0,0,1,0,0]=>6
[1,0,1,1,1,0,1,0,0,0]=>6
[1,0,1,1,1,1,0,0,0,0]=>6
[1,1,0,0,1,0,1,0,1,0]=>5
[1,1,0,0,1,0,1,1,0,0]=>6
[1,1,0,0,1,1,0,0,1,0]=>6
[1,1,0,0,1,1,0,1,0,0]=>6
[1,1,0,0,1,1,1,0,0,0]=>6
[1,1,0,1,0,0,1,0,1,0]=>5
[1,1,0,1,0,0,1,1,0,0]=>6
[1,1,0,1,0,1,0,0,1,0]=>5
[1,1,0,1,0,1,0,1,0,0]=>6
[1,1,0,1,0,1,1,0,0,0]=>6
[1,1,0,1,1,0,0,0,1,0]=>6
[1,1,0,1,1,0,0,1,0,0]=>6
[1,1,0,1,1,0,1,0,0,0]=>6
[1,1,0,1,1,1,0,0,0,0]=>6
[1,1,1,0,0,0,1,0,1,0]=>6
[1,1,1,0,0,0,1,1,0,0]=>6
[1,1,1,0,0,1,0,0,1,0]=>6
[1,1,1,0,0,1,0,1,0,0]=>6
[1,1,1,0,0,1,1,0,0,0]=>6
[1,1,1,0,1,0,0,0,1,0]=>6
[1,1,1,0,1,0,0,1,0,0]=>6
[1,1,1,0,1,0,1,0,0,0]=>6
[1,1,1,0,1,1,0,0,0,0]=>6
[1,1,1,1,0,0,0,0,1,0]=>6
[1,1,1,1,0,0,0,1,0,0]=>6
[1,1,1,1,0,0,1,0,0,0]=>6
[1,1,1,1,0,1,0,0,0,0]=>6
[1,1,1,1,1,0,0,0,0,0]=>6
[1,0,1,0,1,0,1,0,1,0,1,0]=>4
[1,0,1,0,1,0,1,0,1,1,0,0]=>5
[1,0,1,0,1,0,1,1,0,0,1,0]=>6
[1,0,1,0,1,0,1,1,0,1,0,0]=>5
[1,0,1,0,1,0,1,1,1,0,0,0]=>6
[1,0,1,0,1,1,0,0,1,0,1,0]=>7
[1,0,1,0,1,1,0,0,1,1,0,0]=>7
[1,0,1,0,1,1,0,1,0,0,1,0]=>5
[1,0,1,0,1,1,0,1,0,1,0,0]=>5
[1,0,1,0,1,1,0,1,1,0,0,0]=>6
[1,0,1,0,1,1,1,0,0,0,1,0]=>7
[1,0,1,0,1,1,1,0,0,1,0,0]=>7
[1,0,1,0,1,1,1,0,1,0,0,0]=>6
[1,0,1,0,1,1,1,1,0,0,0,0]=>7
[1,0,1,1,0,0,1,0,1,0,1,0]=>6
[1,0,1,1,0,0,1,0,1,1,0,0]=>7
[1,0,1,1,0,0,1,1,0,0,1,0]=>7
[1,0,1,1,0,0,1,1,0,1,0,0]=>7
[1,0,1,1,0,0,1,1,1,0,0,0]=>7
[1,0,1,1,0,1,0,0,1,0,1,0]=>5
[1,0,1,1,0,1,0,0,1,1,0,0]=>6
[1,0,1,1,0,1,0,1,0,0,1,0]=>5
[1,0,1,1,0,1,0,1,0,1,0,0]=>6
[1,0,1,1,0,1,0,1,1,0,0,0]=>6
[1,0,1,1,0,1,1,0,0,0,1,0]=>7
[1,0,1,1,0,1,1,0,0,1,0,0]=>6
[1,0,1,1,0,1,1,0,1,0,0,0]=>6
[1,0,1,1,0,1,1,1,0,0,0,0]=>7
[1,0,1,1,1,0,0,0,1,0,1,0]=>7
[1,0,1,1,1,0,0,0,1,1,0,0]=>7
[1,0,1,1,1,0,0,1,0,0,1,0]=>7
[1,0,1,1,1,0,0,1,0,1,0,0]=>7
[1,0,1,1,1,0,0,1,1,0,0,0]=>7
[1,0,1,1,1,0,1,0,0,0,1,0]=>6
[1,0,1,1,1,0,1,0,0,1,0,0]=>6
[1,0,1,1,1,0,1,0,1,0,0,0]=>6
[1,0,1,1,1,0,1,1,0,0,0,0]=>7
[1,0,1,1,1,1,0,0,0,0,1,0]=>7
[1,0,1,1,1,1,0,0,0,1,0,0]=>7
[1,0,1,1,1,1,0,0,1,0,0,0]=>7
[1,0,1,1,1,1,0,1,0,0,0,0]=>7
[1,0,1,1,1,1,1,0,0,0,0,0]=>7
[1,1,0,0,1,0,1,0,1,0,1,0]=>5
[1,1,0,0,1,0,1,0,1,1,0,0]=>6
[1,1,0,0,1,0,1,1,0,0,1,0]=>7
[1,1,0,0,1,0,1,1,0,1,0,0]=>6
[1,1,0,0,1,0,1,1,1,0,0,0]=>7
[1,1,0,0,1,1,0,0,1,0,1,0]=>7
[1,1,0,0,1,1,0,0,1,1,0,0]=>7
[1,1,0,0,1,1,0,1,0,0,1,0]=>6
[1,1,0,0,1,1,0,1,0,1,0,0]=>6
[1,1,0,0,1,1,0,1,1,0,0,0]=>7
[1,1,0,0,1,1,1,0,0,0,1,0]=>7
[1,1,0,0,1,1,1,0,0,1,0,0]=>7
[1,1,0,0,1,1,1,0,1,0,0,0]=>7
[1,1,0,0,1,1,1,1,0,0,0,0]=>7
[1,1,0,1,0,0,1,0,1,0,1,0]=>5
[1,1,0,1,0,0,1,0,1,1,0,0]=>6
[1,1,0,1,0,0,1,1,0,0,1,0]=>7
[1,1,0,1,0,0,1,1,0,1,0,0]=>6
[1,1,0,1,0,0,1,1,1,0,0,0]=>7
[1,1,0,1,0,1,0,0,1,0,1,0]=>5
[1,1,0,1,0,1,0,0,1,1,0,0]=>6
[1,1,0,1,0,1,0,1,0,0,1,0]=>6
[1,1,0,1,0,1,0,1,0,1,0,0]=>6
[1,1,0,1,0,1,0,1,1,0,0,0]=>7
[1,1,0,1,0,1,1,0,0,0,1,0]=>7
[1,1,0,1,0,1,1,0,0,1,0,0]=>6
[1,1,0,1,0,1,1,0,1,0,0,0]=>7
[1,1,0,1,0,1,1,1,0,0,0,0]=>7
[1,1,0,1,1,0,0,0,1,0,1,0]=>7
[1,1,0,1,1,0,0,0,1,1,0,0]=>7
[1,1,0,1,1,0,0,1,0,0,1,0]=>6
[1,1,0,1,1,0,0,1,0,1,0,0]=>6
[1,1,0,1,1,0,0,1,1,0,0,0]=>7
[1,1,0,1,1,0,1,0,0,0,1,0]=>6
[1,1,0,1,1,0,1,0,0,1,0,0]=>6
[1,1,0,1,1,0,1,0,1,0,0,0]=>7
[1,1,0,1,1,0,1,1,0,0,0,0]=>7
[1,1,0,1,1,1,0,0,0,0,1,0]=>7
[1,1,0,1,1,1,0,0,0,1,0,0]=>7
[1,1,0,1,1,1,0,0,1,0,0,0]=>7
[1,1,0,1,1,1,0,1,0,0,0,0]=>7
[1,1,0,1,1,1,1,0,0,0,0,0]=>7
[1,1,1,0,0,0,1,0,1,0,1,0]=>6
[1,1,1,0,0,0,1,0,1,1,0,0]=>7
[1,1,1,0,0,0,1,1,0,0,1,0]=>7
[1,1,1,0,0,0,1,1,0,1,0,0]=>7
[1,1,1,0,0,0,1,1,1,0,0,0]=>7
[1,1,1,0,0,1,0,0,1,0,1,0]=>6
[1,1,1,0,0,1,0,0,1,1,0,0]=>7
[1,1,1,0,0,1,0,1,0,0,1,0]=>6
[1,1,1,0,0,1,0,1,0,1,0,0]=>7
[1,1,1,0,0,1,0,1,1,0,0,0]=>7
[1,1,1,0,0,1,1,0,0,0,1,0]=>7
[1,1,1,0,0,1,1,0,0,1,0,0]=>7
[1,1,1,0,0,1,1,0,1,0,0,0]=>7
[1,1,1,0,0,1,1,1,0,0,0,0]=>7
[1,1,1,0,1,0,0,0,1,0,1,0]=>6
[1,1,1,0,1,0,0,0,1,1,0,0]=>7
[1,1,1,0,1,0,0,1,0,0,1,0]=>6
[1,1,1,0,1,0,0,1,0,1,0,0]=>7
[1,1,1,0,1,0,0,1,1,0,0,0]=>7
[1,1,1,0,1,0,1,0,0,0,1,0]=>6
[1,1,1,0,1,0,1,0,0,1,0,0]=>7
[1,1,1,0,1,0,1,0,1,0,0,0]=>7
[1,1,1,0,1,0,1,1,0,0,0,0]=>7
[1,1,1,0,1,1,0,0,0,0,1,0]=>7
[1,1,1,0,1,1,0,0,0,1,0,0]=>7
[1,1,1,0,1,1,0,0,1,0,0,0]=>7
[1,1,1,0,1,1,0,1,0,0,0,0]=>7
[1,1,1,0,1,1,1,0,0,0,0,0]=>7
[1,1,1,1,0,0,0,0,1,0,1,0]=>7
[1,1,1,1,0,0,0,0,1,1,0,0]=>7
[1,1,1,1,0,0,0,1,0,0,1,0]=>7
[1,1,1,1,0,0,0,1,0,1,0,0]=>7
[1,1,1,1,0,0,0,1,1,0,0,0]=>7
[1,1,1,1,0,0,1,0,0,0,1,0]=>7
[1,1,1,1,0,0,1,0,0,1,0,0]=>7
[1,1,1,1,0,0,1,0,1,0,0,0]=>7
[1,1,1,1,0,0,1,1,0,0,0,0]=>7
[1,1,1,1,0,1,0,0,0,0,1,0]=>7
[1,1,1,1,0,1,0,0,0,1,0,0]=>7
[1,1,1,1,0,1,0,0,1,0,0,0]=>7
[1,1,1,1,0,1,0,1,0,0,0,0]=>7
[1,1,1,1,0,1,1,0,0,0,0,0]=>7
[1,1,1,1,1,0,0,0,0,0,1,0]=>7
[1,1,1,1,1,0,0,0,0,1,0,0]=>7
[1,1,1,1,1,0,0,0,1,0,0,0]=>7
[1,1,1,1,1,0,0,1,0,0,0,0]=>7
[1,1,1,1,1,0,1,0,0,0,0,0]=>7
[1,1,1,1,1,1,0,0,0,0,0,0]=>7
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
Number of simple modules with projective dimension at most 3 in the Nakayama algebra corresponding to the Dyck path.
Code
DeclareOperation("numberssimpprojdimatmost3", [IsList]); InstallMethod(numberssimpprojdimatmost3, "for a representation of a quiver", [IsList],0,function(L) local list, A,R,RR; list:=L; A:=NakayamaAlgebra(GF(3),list); R:=SimpleModules(A); RR:=Filtered(R,x->ProjDimensionOfModule(x,3)<=3); return(Size(RR)); end );
Created
Oct 30, 2017 at 21:48 by Rene Marczinzik
Updated
Oct 30, 2017 at 21:48 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!