edit this statistic or download as text // json
Identifier
Values
=>
Cc0005;cc-rep
[1,0]=>2 [1,0,1,0]=>3 [1,1,0,0]=>3 [1,0,1,0,1,0]=>4 [1,0,1,1,0,0]=>4 [1,1,0,0,1,0]=>4 [1,1,0,1,0,0]=>4 [1,1,1,0,0,0]=>4 [1,0,1,0,1,0,1,0]=>4 [1,0,1,0,1,1,0,0]=>5 [1,0,1,1,0,0,1,0]=>5 [1,0,1,1,0,1,0,0]=>5 [1,0,1,1,1,0,0,0]=>5 [1,1,0,0,1,0,1,0]=>5 [1,1,0,0,1,1,0,0]=>5 [1,1,0,1,0,0,1,0]=>5 [1,1,0,1,0,1,0,0]=>5 [1,1,0,1,1,0,0,0]=>5 [1,1,1,0,0,0,1,0]=>5 [1,1,1,0,0,1,0,0]=>5 [1,1,1,0,1,0,0,0]=>5 [1,1,1,1,0,0,0,0]=>5 [1,0,1,0,1,0,1,0,1,0]=>4 [1,0,1,0,1,0,1,1,0,0]=>5 [1,0,1,0,1,1,0,0,1,0]=>6 [1,0,1,0,1,1,0,1,0,0]=>5 [1,0,1,0,1,1,1,0,0,0]=>6 [1,0,1,1,0,0,1,0,1,0]=>6 [1,0,1,1,0,0,1,1,0,0]=>6 [1,0,1,1,0,1,0,0,1,0]=>5 [1,0,1,1,0,1,0,1,0,0]=>5 [1,0,1,1,0,1,1,0,0,0]=>6 [1,0,1,1,1,0,0,0,1,0]=>6 [1,0,1,1,1,0,0,1,0,0]=>6 [1,0,1,1,1,0,1,0,0,0]=>6 [1,0,1,1,1,1,0,0,0,0]=>6 [1,1,0,0,1,0,1,0,1,0]=>5 [1,1,0,0,1,0,1,1,0,0]=>6 [1,1,0,0,1,1,0,0,1,0]=>6 [1,1,0,0,1,1,0,1,0,0]=>6 [1,1,0,0,1,1,1,0,0,0]=>6 [1,1,0,1,0,0,1,0,1,0]=>5 [1,1,0,1,0,0,1,1,0,0]=>6 [1,1,0,1,0,1,0,0,1,0]=>5 [1,1,0,1,0,1,0,1,0,0]=>6 [1,1,0,1,0,1,1,0,0,0]=>6 [1,1,0,1,1,0,0,0,1,0]=>6 [1,1,0,1,1,0,0,1,0,0]=>6 [1,1,0,1,1,0,1,0,0,0]=>6 [1,1,0,1,1,1,0,0,0,0]=>6 [1,1,1,0,0,0,1,0,1,0]=>6 [1,1,1,0,0,0,1,1,0,0]=>6 [1,1,1,0,0,1,0,0,1,0]=>6 [1,1,1,0,0,1,0,1,0,0]=>6 [1,1,1,0,0,1,1,0,0,0]=>6 [1,1,1,0,1,0,0,0,1,0]=>6 [1,1,1,0,1,0,0,1,0,0]=>6 [1,1,1,0,1,0,1,0,0,0]=>6 [1,1,1,0,1,1,0,0,0,0]=>6 [1,1,1,1,0,0,0,0,1,0]=>6 [1,1,1,1,0,0,0,1,0,0]=>6 [1,1,1,1,0,0,1,0,0,0]=>6 [1,1,1,1,0,1,0,0,0,0]=>6 [1,1,1,1,1,0,0,0,0,0]=>6 [1,0,1,0,1,0,1,0,1,0,1,0]=>4 [1,0,1,0,1,0,1,0,1,1,0,0]=>5 [1,0,1,0,1,0,1,1,0,0,1,0]=>6 [1,0,1,0,1,0,1,1,0,1,0,0]=>5 [1,0,1,0,1,0,1,1,1,0,0,0]=>6 [1,0,1,0,1,1,0,0,1,0,1,0]=>7 [1,0,1,0,1,1,0,0,1,1,0,0]=>7 [1,0,1,0,1,1,0,1,0,0,1,0]=>5 [1,0,1,0,1,1,0,1,0,1,0,0]=>5 [1,0,1,0,1,1,0,1,1,0,0,0]=>6 [1,0,1,0,1,1,1,0,0,0,1,0]=>7 [1,0,1,0,1,1,1,0,0,1,0,0]=>7 [1,0,1,0,1,1,1,0,1,0,0,0]=>6 [1,0,1,0,1,1,1,1,0,0,0,0]=>7 [1,0,1,1,0,0,1,0,1,0,1,0]=>6 [1,0,1,1,0,0,1,0,1,1,0,0]=>7 [1,0,1,1,0,0,1,1,0,0,1,0]=>7 [1,0,1,1,0,0,1,1,0,1,0,0]=>7 [1,0,1,1,0,0,1,1,1,0,0,0]=>7 [1,0,1,1,0,1,0,0,1,0,1,0]=>5 [1,0,1,1,0,1,0,0,1,1,0,0]=>6 [1,0,1,1,0,1,0,1,0,0,1,0]=>5 [1,0,1,1,0,1,0,1,0,1,0,0]=>6 [1,0,1,1,0,1,0,1,1,0,0,0]=>6 [1,0,1,1,0,1,1,0,0,0,1,0]=>7 [1,0,1,1,0,1,1,0,0,1,0,0]=>6 [1,0,1,1,0,1,1,0,1,0,0,0]=>6 [1,0,1,1,0,1,1,1,0,0,0,0]=>7 [1,0,1,1,1,0,0,0,1,0,1,0]=>7 [1,0,1,1,1,0,0,0,1,1,0,0]=>7 [1,0,1,1,1,0,0,1,0,0,1,0]=>7 [1,0,1,1,1,0,0,1,0,1,0,0]=>7 [1,0,1,1,1,0,0,1,1,0,0,0]=>7 [1,0,1,1,1,0,1,0,0,0,1,0]=>6 [1,0,1,1,1,0,1,0,0,1,0,0]=>6 [1,0,1,1,1,0,1,0,1,0,0,0]=>6 [1,0,1,1,1,0,1,1,0,0,0,0]=>7 [1,0,1,1,1,1,0,0,0,0,1,0]=>7 [1,0,1,1,1,1,0,0,0,1,0,0]=>7 [1,0,1,1,1,1,0,0,1,0,0,0]=>7 [1,0,1,1,1,1,0,1,0,0,0,0]=>7 [1,0,1,1,1,1,1,0,0,0,0,0]=>7 [1,1,0,0,1,0,1,0,1,0,1,0]=>5 [1,1,0,0,1,0,1,0,1,1,0,0]=>6 [1,1,0,0,1,0,1,1,0,0,1,0]=>7 [1,1,0,0,1,0,1,1,0,1,0,0]=>6 [1,1,0,0,1,0,1,1,1,0,0,0]=>7 [1,1,0,0,1,1,0,0,1,0,1,0]=>7 [1,1,0,0,1,1,0,0,1,1,0,0]=>7 [1,1,0,0,1,1,0,1,0,0,1,0]=>6 [1,1,0,0,1,1,0,1,0,1,0,0]=>6 [1,1,0,0,1,1,0,1,1,0,0,0]=>7 [1,1,0,0,1,1,1,0,0,0,1,0]=>7 [1,1,0,0,1,1,1,0,0,1,0,0]=>7 [1,1,0,0,1,1,1,0,1,0,0,0]=>7 [1,1,0,0,1,1,1,1,0,0,0,0]=>7 [1,1,0,1,0,0,1,0,1,0,1,0]=>5 [1,1,0,1,0,0,1,0,1,1,0,0]=>6 [1,1,0,1,0,0,1,1,0,0,1,0]=>7 [1,1,0,1,0,0,1,1,0,1,0,0]=>6 [1,1,0,1,0,0,1,1,1,0,0,0]=>7 [1,1,0,1,0,1,0,0,1,0,1,0]=>5 [1,1,0,1,0,1,0,0,1,1,0,0]=>6 [1,1,0,1,0,1,0,1,0,0,1,0]=>6 [1,1,0,1,0,1,0,1,0,1,0,0]=>6 [1,1,0,1,0,1,0,1,1,0,0,0]=>7 [1,1,0,1,0,1,1,0,0,0,1,0]=>7 [1,1,0,1,0,1,1,0,0,1,0,0]=>6 [1,1,0,1,0,1,1,0,1,0,0,0]=>7 [1,1,0,1,0,1,1,1,0,0,0,0]=>7 [1,1,0,1,1,0,0,0,1,0,1,0]=>7 [1,1,0,1,1,0,0,0,1,1,0,0]=>7 [1,1,0,1,1,0,0,1,0,0,1,0]=>6 [1,1,0,1,1,0,0,1,0,1,0,0]=>6 [1,1,0,1,1,0,0,1,1,0,0,0]=>7 [1,1,0,1,1,0,1,0,0,0,1,0]=>6 [1,1,0,1,1,0,1,0,0,1,0,0]=>6 [1,1,0,1,1,0,1,0,1,0,0,0]=>7 [1,1,0,1,1,0,1,1,0,0,0,0]=>7 [1,1,0,1,1,1,0,0,0,0,1,0]=>7 [1,1,0,1,1,1,0,0,0,1,0,0]=>7 [1,1,0,1,1,1,0,0,1,0,0,0]=>7 [1,1,0,1,1,1,0,1,0,0,0,0]=>7 [1,1,0,1,1,1,1,0,0,0,0,0]=>7 [1,1,1,0,0,0,1,0,1,0,1,0]=>6 [1,1,1,0,0,0,1,0,1,1,0,0]=>7 [1,1,1,0,0,0,1,1,0,0,1,0]=>7 [1,1,1,0,0,0,1,1,0,1,0,0]=>7 [1,1,1,0,0,0,1,1,1,0,0,0]=>7 [1,1,1,0,0,1,0,0,1,0,1,0]=>6 [1,1,1,0,0,1,0,0,1,1,0,0]=>7 [1,1,1,0,0,1,0,1,0,0,1,0]=>6 [1,1,1,0,0,1,0,1,0,1,0,0]=>7 [1,1,1,0,0,1,0,1,1,0,0,0]=>7 [1,1,1,0,0,1,1,0,0,0,1,0]=>7 [1,1,1,0,0,1,1,0,0,1,0,0]=>7 [1,1,1,0,0,1,1,0,1,0,0,0]=>7 [1,1,1,0,0,1,1,1,0,0,0,0]=>7 [1,1,1,0,1,0,0,0,1,0,1,0]=>6 [1,1,1,0,1,0,0,0,1,1,0,0]=>7 [1,1,1,0,1,0,0,1,0,0,1,0]=>6 [1,1,1,0,1,0,0,1,0,1,0,0]=>7 [1,1,1,0,1,0,0,1,1,0,0,0]=>7 [1,1,1,0,1,0,1,0,0,0,1,0]=>6 [1,1,1,0,1,0,1,0,0,1,0,0]=>7 [1,1,1,0,1,0,1,0,1,0,0,0]=>7 [1,1,1,0,1,0,1,1,0,0,0,0]=>7 [1,1,1,0,1,1,0,0,0,0,1,0]=>7 [1,1,1,0,1,1,0,0,0,1,0,0]=>7 [1,1,1,0,1,1,0,0,1,0,0,0]=>7 [1,1,1,0,1,1,0,1,0,0,0,0]=>7 [1,1,1,0,1,1,1,0,0,0,0,0]=>7 [1,1,1,1,0,0,0,0,1,0,1,0]=>7 [1,1,1,1,0,0,0,0,1,1,0,0]=>7 [1,1,1,1,0,0,0,1,0,0,1,0]=>7 [1,1,1,1,0,0,0,1,0,1,0,0]=>7 [1,1,1,1,0,0,0,1,1,0,0,0]=>7 [1,1,1,1,0,0,1,0,0,0,1,0]=>7 [1,1,1,1,0,0,1,0,0,1,0,0]=>7 [1,1,1,1,0,0,1,0,1,0,0,0]=>7 [1,1,1,1,0,0,1,1,0,0,0,0]=>7 [1,1,1,1,0,1,0,0,0,0,1,0]=>7 [1,1,1,1,0,1,0,0,0,1,0,0]=>7 [1,1,1,1,0,1,0,0,1,0,0,0]=>7 [1,1,1,1,0,1,0,1,0,0,0,0]=>7 [1,1,1,1,0,1,1,0,0,0,0,0]=>7 [1,1,1,1,1,0,0,0,0,0,1,0]=>7 [1,1,1,1,1,0,0,0,0,1,0,0]=>7 [1,1,1,1,1,0,0,0,1,0,0,0]=>7 [1,1,1,1,1,0,0,1,0,0,0,0]=>7 [1,1,1,1,1,0,1,0,0,0,0,0]=>7 [1,1,1,1,1,1,0,0,0,0,0,0]=>7
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
Number of simple modules with projective dimension at most 3 in the Nakayama algebra corresponding to the Dyck path.
Code

DeclareOperation("numberssimpprojdimatmost3", [IsList]);

InstallMethod(numberssimpprojdimatmost3, "for a representation of a quiver", [IsList],0,function(L)


local list, A,R,RR;


list:=L;

A:=NakayamaAlgebra(GF(3),list);
R:=SimpleModules(A);
RR:=Filtered(R,x->ProjDimensionOfModule(x,3)<=3);
return(Size(RR));
end
);



Created
Oct 30, 2017 at 21:48 by Rene Marczinzik
Updated
Oct 30, 2017 at 21:48 by Rene Marczinzik