Identifier
- St001065: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[1,0]=>2
[1,0,1,0]=>3
[1,1,0,0]=>3
[1,0,1,0,1,0]=>5
[1,0,1,1,0,0]=>4
[1,1,0,0,1,0]=>4
[1,1,0,1,0,0]=>3
[1,1,1,0,0,0]=>4
[1,0,1,0,1,0,1,0]=>7
[1,0,1,0,1,1,0,0]=>6
[1,0,1,1,0,0,1,0]=>5
[1,0,1,1,0,1,0,0]=>5
[1,0,1,1,1,0,0,0]=>5
[1,1,0,0,1,0,1,0]=>6
[1,1,0,0,1,1,0,0]=>5
[1,1,0,1,0,0,1,0]=>5
[1,1,0,1,0,1,0,0]=>6
[1,1,0,1,1,0,0,0]=>4
[1,1,1,0,0,0,1,0]=>5
[1,1,1,0,0,1,0,0]=>4
[1,1,1,0,1,0,0,0]=>3
[1,1,1,1,0,0,0,0]=>5
[1,0,1,0,1,0,1,0,1,0]=>9
[1,0,1,0,1,0,1,1,0,0]=>8
[1,0,1,0,1,1,0,0,1,0]=>7
[1,0,1,0,1,1,0,1,0,0]=>7
[1,0,1,0,1,1,1,0,0,0]=>7
[1,0,1,1,0,0,1,0,1,0]=>7
[1,0,1,1,0,0,1,1,0,0]=>6
[1,0,1,1,0,1,0,0,1,0]=>7
[1,0,1,1,0,1,0,1,0,0]=>8
[1,0,1,1,0,1,1,0,0,0]=>6
[1,0,1,1,1,0,0,0,1,0]=>6
[1,0,1,1,1,0,0,1,0,0]=>5
[1,0,1,1,1,0,1,0,0,0]=>5
[1,0,1,1,1,1,0,0,0,0]=>6
[1,1,0,0,1,0,1,0,1,0]=>8
[1,1,0,0,1,0,1,1,0,0]=>7
[1,1,0,0,1,1,0,0,1,0]=>6
[1,1,0,0,1,1,0,1,0,0]=>6
[1,1,0,0,1,1,1,0,0,0]=>6
[1,1,0,1,0,0,1,0,1,0]=>7
[1,1,0,1,0,0,1,1,0,0]=>6
[1,1,0,1,0,1,0,0,1,0]=>8
[1,1,0,1,0,1,0,1,0,0]=>9
[1,1,0,1,0,1,1,0,0,0]=>7
[1,1,0,1,1,0,0,0,1,0]=>5
[1,1,0,1,1,0,0,1,0,0]=>5
[1,1,0,1,1,0,1,0,0,0]=>6
[1,1,0,1,1,1,0,0,0,0]=>5
[1,1,1,0,0,0,1,0,1,0]=>7
[1,1,1,0,0,0,1,1,0,0]=>6
[1,1,1,0,0,1,0,0,1,0]=>6
[1,1,1,0,0,1,0,1,0,0]=>7
[1,1,1,0,0,1,1,0,0,0]=>5
[1,1,1,0,1,0,0,0,1,0]=>5
[1,1,1,0,1,0,0,1,0,0]=>6
[1,1,1,0,1,0,1,0,0,0]=>6
[1,1,1,0,1,1,0,0,0,0]=>4
[1,1,1,1,0,0,0,0,1,0]=>6
[1,1,1,1,0,0,0,1,0,0]=>5
[1,1,1,1,0,0,1,0,0,0]=>4
[1,1,1,1,0,1,0,0,0,0]=>3
[1,1,1,1,1,0,0,0,0,0]=>6
[1,0,1,0,1,0,1,0,1,0,1,0]=>11
[1,0,1,0,1,0,1,0,1,1,0,0]=>10
[1,0,1,0,1,0,1,1,0,0,1,0]=>9
[1,0,1,0,1,0,1,1,0,1,0,0]=>9
[1,0,1,0,1,0,1,1,1,0,0,0]=>9
[1,0,1,0,1,1,0,0,1,0,1,0]=>9
[1,0,1,0,1,1,0,0,1,1,0,0]=>8
[1,0,1,0,1,1,0,1,0,0,1,0]=>9
[1,0,1,0,1,1,0,1,0,1,0,0]=>10
[1,0,1,0,1,1,0,1,1,0,0,0]=>8
[1,0,1,0,1,1,1,0,0,0,1,0]=>8
[1,0,1,0,1,1,1,0,0,1,0,0]=>7
[1,0,1,0,1,1,1,0,1,0,0,0]=>7
[1,0,1,0,1,1,1,1,0,0,0,0]=>8
[1,0,1,1,0,0,1,0,1,0,1,0]=>9
[1,0,1,1,0,0,1,0,1,1,0,0]=>8
[1,0,1,1,0,0,1,1,0,0,1,0]=>7
[1,0,1,1,0,0,1,1,0,1,0,0]=>7
[1,0,1,1,0,0,1,1,1,0,0,0]=>7
[1,0,1,1,0,1,0,0,1,0,1,0]=>9
[1,0,1,1,0,1,0,0,1,1,0,0]=>8
[1,0,1,1,0,1,0,1,0,0,1,0]=>10
[1,0,1,1,0,1,0,1,0,1,0,0]=>11
[1,0,1,1,0,1,0,1,1,0,0,0]=>9
[1,0,1,1,0,1,1,0,0,0,1,0]=>7
[1,0,1,1,0,1,1,0,0,1,0,0]=>7
[1,0,1,1,0,1,1,0,1,0,0,0]=>8
[1,0,1,1,0,1,1,1,0,0,0,0]=>7
[1,0,1,1,1,0,0,0,1,0,1,0]=>8
[1,0,1,1,1,0,0,0,1,1,0,0]=>7
[1,0,1,1,1,0,0,1,0,0,1,0]=>7
[1,0,1,1,1,0,0,1,0,1,0,0]=>8
[1,0,1,1,1,0,0,1,1,0,0,0]=>6
[1,0,1,1,1,0,1,0,0,0,1,0]=>7
[1,0,1,1,1,0,1,0,0,1,0,0]=>8
[1,0,1,1,1,0,1,0,1,0,0,0]=>8
[1,0,1,1,1,0,1,1,0,0,0,0]=>6
[1,0,1,1,1,1,0,0,0,0,1,0]=>7
[1,0,1,1,1,1,0,0,0,1,0,0]=>6
[1,0,1,1,1,1,0,0,1,0,0,0]=>5
[1,0,1,1,1,1,0,1,0,0,0,0]=>5
[1,0,1,1,1,1,1,0,0,0,0,0]=>7
[1,1,0,0,1,0,1,0,1,0,1,0]=>10
[1,1,0,0,1,0,1,0,1,1,0,0]=>9
[1,1,0,0,1,0,1,1,0,0,1,0]=>8
[1,1,0,0,1,0,1,1,0,1,0,0]=>8
[1,1,0,0,1,0,1,1,1,0,0,0]=>8
[1,1,0,0,1,1,0,0,1,0,1,0]=>8
[1,1,0,0,1,1,0,0,1,1,0,0]=>7
[1,1,0,0,1,1,0,1,0,0,1,0]=>8
[1,1,0,0,1,1,0,1,0,1,0,0]=>9
[1,1,0,0,1,1,0,1,1,0,0,0]=>7
[1,1,0,0,1,1,1,0,0,0,1,0]=>7
[1,1,0,0,1,1,1,0,0,1,0,0]=>6
[1,1,0,0,1,1,1,0,1,0,0,0]=>6
[1,1,0,0,1,1,1,1,0,0,0,0]=>7
[1,1,0,1,0,0,1,0,1,0,1,0]=>9
[1,1,0,1,0,0,1,0,1,1,0,0]=>8
[1,1,0,1,0,0,1,1,0,0,1,0]=>7
[1,1,0,1,0,0,1,1,0,1,0,0]=>7
[1,1,0,1,0,0,1,1,1,0,0,0]=>7
[1,1,0,1,0,1,0,0,1,0,1,0]=>10
[1,1,0,1,0,1,0,0,1,1,0,0]=>9
[1,1,0,1,0,1,0,1,0,0,1,0]=>11
[1,1,0,1,0,1,0,1,0,1,0,0]=>12
[1,1,0,1,0,1,0,1,1,0,0,0]=>10
[1,1,0,1,0,1,1,0,0,0,1,0]=>8
[1,1,0,1,0,1,1,0,0,1,0,0]=>8
[1,1,0,1,0,1,1,0,1,0,0,0]=>9
[1,1,0,1,0,1,1,1,0,0,0,0]=>8
[1,1,0,1,1,0,0,0,1,0,1,0]=>7
[1,1,0,1,1,0,0,0,1,1,0,0]=>6
[1,1,0,1,1,0,0,1,0,0,1,0]=>7
[1,1,0,1,1,0,0,1,0,1,0,0]=>8
[1,1,0,1,1,0,0,1,1,0,0,0]=>6
[1,1,0,1,1,0,1,0,0,0,1,0]=>8
[1,1,0,1,1,0,1,0,0,1,0,0]=>9
[1,1,0,1,1,0,1,0,1,0,0,0]=>9
[1,1,0,1,1,0,1,1,0,0,0,0]=>7
[1,1,0,1,1,1,0,0,0,0,1,0]=>6
[1,1,0,1,1,1,0,0,0,1,0,0]=>5
[1,1,0,1,1,1,0,0,1,0,0,0]=>5
[1,1,0,1,1,1,0,1,0,0,0,0]=>6
[1,1,0,1,1,1,1,0,0,0,0,0]=>6
[1,1,1,0,0,0,1,0,1,0,1,0]=>9
[1,1,1,0,0,0,1,0,1,1,0,0]=>8
[1,1,1,0,0,0,1,1,0,0,1,0]=>7
[1,1,1,0,0,0,1,1,0,1,0,0]=>7
[1,1,1,0,0,0,1,1,1,0,0,0]=>7
[1,1,1,0,0,1,0,0,1,0,1,0]=>8
[1,1,1,0,0,1,0,0,1,1,0,0]=>7
[1,1,1,0,0,1,0,1,0,0,1,0]=>9
[1,1,1,0,0,1,0,1,0,1,0,0]=>10
[1,1,1,0,0,1,0,1,1,0,0,0]=>8
[1,1,1,0,0,1,1,0,0,0,1,0]=>6
[1,1,1,0,0,1,1,0,0,1,0,0]=>6
[1,1,1,0,0,1,1,0,1,0,0,0]=>7
[1,1,1,0,0,1,1,1,0,0,0,0]=>6
[1,1,1,0,1,0,0,0,1,0,1,0]=>7
[1,1,1,0,1,0,0,0,1,1,0,0]=>6
[1,1,1,0,1,0,0,1,0,0,1,0]=>8
[1,1,1,0,1,0,0,1,0,1,0,0]=>9
[1,1,1,0,1,0,0,1,1,0,0,0]=>7
[1,1,1,0,1,0,1,0,0,0,1,0]=>8
[1,1,1,0,1,0,1,0,0,1,0,0]=>9
[1,1,1,0,1,0,1,0,1,0,0,0]=>10
[1,1,1,0,1,0,1,1,0,0,0,0]=>7
[1,1,1,0,1,1,0,0,0,0,1,0]=>5
[1,1,1,0,1,1,0,0,0,1,0,0]=>5
[1,1,1,0,1,1,0,0,1,0,0,0]=>6
[1,1,1,0,1,1,0,1,0,0,0,0]=>6
[1,1,1,0,1,1,1,0,0,0,0,0]=>5
[1,1,1,1,0,0,0,0,1,0,1,0]=>8
[1,1,1,1,0,0,0,0,1,1,0,0]=>7
[1,1,1,1,0,0,0,1,0,0,1,0]=>7
[1,1,1,1,0,0,0,1,0,1,0,0]=>8
[1,1,1,1,0,0,0,1,1,0,0,0]=>6
[1,1,1,1,0,0,1,0,0,0,1,0]=>6
[1,1,1,1,0,0,1,0,0,1,0,0]=>7
[1,1,1,1,0,0,1,0,1,0,0,0]=>7
[1,1,1,1,0,0,1,1,0,0,0,0]=>5
[1,1,1,1,0,1,0,0,0,0,1,0]=>5
[1,1,1,1,0,1,0,0,0,1,0,0]=>6
[1,1,1,1,0,1,0,0,1,0,0,0]=>6
[1,1,1,1,0,1,0,1,0,0,0,0]=>6
[1,1,1,1,0,1,1,0,0,0,0,0]=>4
[1,1,1,1,1,0,0,0,0,0,1,0]=>7
[1,1,1,1,1,0,0,0,0,1,0,0]=>6
[1,1,1,1,1,0,0,0,1,0,0,0]=>5
[1,1,1,1,1,0,0,1,0,0,0,0]=>4
[1,1,1,1,1,0,1,0,0,0,0,0]=>3
[1,1,1,1,1,1,0,0,0,0,0,0]=>7
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
Number of indecomposable reflexive modules in the corresponding Nakayama algebra.
References
Code
DeclareOperation("IsNthSyzygy",[IsList]); InstallMethod(IsNthSyzygy, "for a representation of a quiver", [IsList],0,function(LIST) local M, n, f, N, i, h,W; M:=LIST[1]; n:=LIST[2]; N:=DualOfModule(NthSyzygy(DualOfModule(M),n)); W:=NthSyzygy(N,n); if IsDirectSummand(M,W)=true then return(1); else return(0); fi; end); DeclareOperation("NumberOfReflexiveModules",[IsList]); InstallMethod(NumberOfReflexiveModules, "for a representation of a quiver", [IsList],0,function(LIST) local M, n, f, N, i, h,W; L:=LIST[1]; A:=NakayamaAlgebra(L,GF(3)); L:=ARQuiver([A,1000])[2]; LL1:=Filtered(L,x->DominantDimensionOfModule(x,30)>=1); LL2:=Filtered(LL1,x->IsNthSyzygy([x,2])=1); return(Size(LL2)); end);
Created
Dec 30, 2017 at 17:27 by Rene Marczinzik
Updated
Dec 30, 2017 at 17:27 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!