edit this statistic or download as text // json
Identifier
Values
=>
Cc0005;cc-rep
[1,0]=>2 [1,0,1,0]=>3 [1,1,0,0]=>3 [1,0,1,0,1,0]=>5 [1,0,1,1,0,0]=>4 [1,1,0,0,1,0]=>4 [1,1,0,1,0,0]=>3 [1,1,1,0,0,0]=>4 [1,0,1,0,1,0,1,0]=>7 [1,0,1,0,1,1,0,0]=>6 [1,0,1,1,0,0,1,0]=>5 [1,0,1,1,0,1,0,0]=>5 [1,0,1,1,1,0,0,0]=>5 [1,1,0,0,1,0,1,0]=>6 [1,1,0,0,1,1,0,0]=>5 [1,1,0,1,0,0,1,0]=>5 [1,1,0,1,0,1,0,0]=>6 [1,1,0,1,1,0,0,0]=>4 [1,1,1,0,0,0,1,0]=>5 [1,1,1,0,0,1,0,0]=>4 [1,1,1,0,1,0,0,0]=>3 [1,1,1,1,0,0,0,0]=>5 [1,0,1,0,1,0,1,0,1,0]=>9 [1,0,1,0,1,0,1,1,0,0]=>8 [1,0,1,0,1,1,0,0,1,0]=>7 [1,0,1,0,1,1,0,1,0,0]=>7 [1,0,1,0,1,1,1,0,0,0]=>7 [1,0,1,1,0,0,1,0,1,0]=>7 [1,0,1,1,0,0,1,1,0,0]=>6 [1,0,1,1,0,1,0,0,1,0]=>7 [1,0,1,1,0,1,0,1,0,0]=>8 [1,0,1,1,0,1,1,0,0,0]=>6 [1,0,1,1,1,0,0,0,1,0]=>6 [1,0,1,1,1,0,0,1,0,0]=>5 [1,0,1,1,1,0,1,0,0,0]=>5 [1,0,1,1,1,1,0,0,0,0]=>6 [1,1,0,0,1,0,1,0,1,0]=>8 [1,1,0,0,1,0,1,1,0,0]=>7 [1,1,0,0,1,1,0,0,1,0]=>6 [1,1,0,0,1,1,0,1,0,0]=>6 [1,1,0,0,1,1,1,0,0,0]=>6 [1,1,0,1,0,0,1,0,1,0]=>7 [1,1,0,1,0,0,1,1,0,0]=>6 [1,1,0,1,0,1,0,0,1,0]=>8 [1,1,0,1,0,1,0,1,0,0]=>9 [1,1,0,1,0,1,1,0,0,0]=>7 [1,1,0,1,1,0,0,0,1,0]=>5 [1,1,0,1,1,0,0,1,0,0]=>5 [1,1,0,1,1,0,1,0,0,0]=>6 [1,1,0,1,1,1,0,0,0,0]=>5 [1,1,1,0,0,0,1,0,1,0]=>7 [1,1,1,0,0,0,1,1,0,0]=>6 [1,1,1,0,0,1,0,0,1,0]=>6 [1,1,1,0,0,1,0,1,0,0]=>7 [1,1,1,0,0,1,1,0,0,0]=>5 [1,1,1,0,1,0,0,0,1,0]=>5 [1,1,1,0,1,0,0,1,0,0]=>6 [1,1,1,0,1,0,1,0,0,0]=>6 [1,1,1,0,1,1,0,0,0,0]=>4 [1,1,1,1,0,0,0,0,1,0]=>6 [1,1,1,1,0,0,0,1,0,0]=>5 [1,1,1,1,0,0,1,0,0,0]=>4 [1,1,1,1,0,1,0,0,0,0]=>3 [1,1,1,1,1,0,0,0,0,0]=>6 [1,0,1,0,1,0,1,0,1,0,1,0]=>11 [1,0,1,0,1,0,1,0,1,1,0,0]=>10 [1,0,1,0,1,0,1,1,0,0,1,0]=>9 [1,0,1,0,1,0,1,1,0,1,0,0]=>9 [1,0,1,0,1,0,1,1,1,0,0,0]=>9 [1,0,1,0,1,1,0,0,1,0,1,0]=>9 [1,0,1,0,1,1,0,0,1,1,0,0]=>8 [1,0,1,0,1,1,0,1,0,0,1,0]=>9 [1,0,1,0,1,1,0,1,0,1,0,0]=>10 [1,0,1,0,1,1,0,1,1,0,0,0]=>8 [1,0,1,0,1,1,1,0,0,0,1,0]=>8 [1,0,1,0,1,1,1,0,0,1,0,0]=>7 [1,0,1,0,1,1,1,0,1,0,0,0]=>7 [1,0,1,0,1,1,1,1,0,0,0,0]=>8 [1,0,1,1,0,0,1,0,1,0,1,0]=>9 [1,0,1,1,0,0,1,0,1,1,0,0]=>8 [1,0,1,1,0,0,1,1,0,0,1,0]=>7 [1,0,1,1,0,0,1,1,0,1,0,0]=>7 [1,0,1,1,0,0,1,1,1,0,0,0]=>7 [1,0,1,1,0,1,0,0,1,0,1,0]=>9 [1,0,1,1,0,1,0,0,1,1,0,0]=>8 [1,0,1,1,0,1,0,1,0,0,1,0]=>10 [1,0,1,1,0,1,0,1,0,1,0,0]=>11 [1,0,1,1,0,1,0,1,1,0,0,0]=>9 [1,0,1,1,0,1,1,0,0,0,1,0]=>7 [1,0,1,1,0,1,1,0,0,1,0,0]=>7 [1,0,1,1,0,1,1,0,1,0,0,0]=>8 [1,0,1,1,0,1,1,1,0,0,0,0]=>7 [1,0,1,1,1,0,0,0,1,0,1,0]=>8 [1,0,1,1,1,0,0,0,1,1,0,0]=>7 [1,0,1,1,1,0,0,1,0,0,1,0]=>7 [1,0,1,1,1,0,0,1,0,1,0,0]=>8 [1,0,1,1,1,0,0,1,1,0,0,0]=>6 [1,0,1,1,1,0,1,0,0,0,1,0]=>7 [1,0,1,1,1,0,1,0,0,1,0,0]=>8 [1,0,1,1,1,0,1,0,1,0,0,0]=>8 [1,0,1,1,1,0,1,1,0,0,0,0]=>6 [1,0,1,1,1,1,0,0,0,0,1,0]=>7 [1,0,1,1,1,1,0,0,0,1,0,0]=>6 [1,0,1,1,1,1,0,0,1,0,0,0]=>5 [1,0,1,1,1,1,0,1,0,0,0,0]=>5 [1,0,1,1,1,1,1,0,0,0,0,0]=>7 [1,1,0,0,1,0,1,0,1,0,1,0]=>10 [1,1,0,0,1,0,1,0,1,1,0,0]=>9 [1,1,0,0,1,0,1,1,0,0,1,0]=>8 [1,1,0,0,1,0,1,1,0,1,0,0]=>8 [1,1,0,0,1,0,1,1,1,0,0,0]=>8 [1,1,0,0,1,1,0,0,1,0,1,0]=>8 [1,1,0,0,1,1,0,0,1,1,0,0]=>7 [1,1,0,0,1,1,0,1,0,0,1,0]=>8 [1,1,0,0,1,1,0,1,0,1,0,0]=>9 [1,1,0,0,1,1,0,1,1,0,0,0]=>7 [1,1,0,0,1,1,1,0,0,0,1,0]=>7 [1,1,0,0,1,1,1,0,0,1,0,0]=>6 [1,1,0,0,1,1,1,0,1,0,0,0]=>6 [1,1,0,0,1,1,1,1,0,0,0,0]=>7 [1,1,0,1,0,0,1,0,1,0,1,0]=>9 [1,1,0,1,0,0,1,0,1,1,0,0]=>8 [1,1,0,1,0,0,1,1,0,0,1,0]=>7 [1,1,0,1,0,0,1,1,0,1,0,0]=>7 [1,1,0,1,0,0,1,1,1,0,0,0]=>7 [1,1,0,1,0,1,0,0,1,0,1,0]=>10 [1,1,0,1,0,1,0,0,1,1,0,0]=>9 [1,1,0,1,0,1,0,1,0,0,1,0]=>11 [1,1,0,1,0,1,0,1,0,1,0,0]=>12 [1,1,0,1,0,1,0,1,1,0,0,0]=>10 [1,1,0,1,0,1,1,0,0,0,1,0]=>8 [1,1,0,1,0,1,1,0,0,1,0,0]=>8 [1,1,0,1,0,1,1,0,1,0,0,0]=>9 [1,1,0,1,0,1,1,1,0,0,0,0]=>8 [1,1,0,1,1,0,0,0,1,0,1,0]=>7 [1,1,0,1,1,0,0,0,1,1,0,0]=>6 [1,1,0,1,1,0,0,1,0,0,1,0]=>7 [1,1,0,1,1,0,0,1,0,1,0,0]=>8 [1,1,0,1,1,0,0,1,1,0,0,0]=>6 [1,1,0,1,1,0,1,0,0,0,1,0]=>8 [1,1,0,1,1,0,1,0,0,1,0,0]=>9 [1,1,0,1,1,0,1,0,1,0,0,0]=>9 [1,1,0,1,1,0,1,1,0,0,0,0]=>7 [1,1,0,1,1,1,0,0,0,0,1,0]=>6 [1,1,0,1,1,1,0,0,0,1,0,0]=>5 [1,1,0,1,1,1,0,0,1,0,0,0]=>5 [1,1,0,1,1,1,0,1,0,0,0,0]=>6 [1,1,0,1,1,1,1,0,0,0,0,0]=>6 [1,1,1,0,0,0,1,0,1,0,1,0]=>9 [1,1,1,0,0,0,1,0,1,1,0,0]=>8 [1,1,1,0,0,0,1,1,0,0,1,0]=>7 [1,1,1,0,0,0,1,1,0,1,0,0]=>7 [1,1,1,0,0,0,1,1,1,0,0,0]=>7 [1,1,1,0,0,1,0,0,1,0,1,0]=>8 [1,1,1,0,0,1,0,0,1,1,0,0]=>7 [1,1,1,0,0,1,0,1,0,0,1,0]=>9 [1,1,1,0,0,1,0,1,0,1,0,0]=>10 [1,1,1,0,0,1,0,1,1,0,0,0]=>8 [1,1,1,0,0,1,1,0,0,0,1,0]=>6 [1,1,1,0,0,1,1,0,0,1,0,0]=>6 [1,1,1,0,0,1,1,0,1,0,0,0]=>7 [1,1,1,0,0,1,1,1,0,0,0,0]=>6 [1,1,1,0,1,0,0,0,1,0,1,0]=>7 [1,1,1,0,1,0,0,0,1,1,0,0]=>6 [1,1,1,0,1,0,0,1,0,0,1,0]=>8 [1,1,1,0,1,0,0,1,0,1,0,0]=>9 [1,1,1,0,1,0,0,1,1,0,0,0]=>7 [1,1,1,0,1,0,1,0,0,0,1,0]=>8 [1,1,1,0,1,0,1,0,0,1,0,0]=>9 [1,1,1,0,1,0,1,0,1,0,0,0]=>10 [1,1,1,0,1,0,1,1,0,0,0,0]=>7 [1,1,1,0,1,1,0,0,0,0,1,0]=>5 [1,1,1,0,1,1,0,0,0,1,0,0]=>5 [1,1,1,0,1,1,0,0,1,0,0,0]=>6 [1,1,1,0,1,1,0,1,0,0,0,0]=>6 [1,1,1,0,1,1,1,0,0,0,0,0]=>5 [1,1,1,1,0,0,0,0,1,0,1,0]=>8 [1,1,1,1,0,0,0,0,1,1,0,0]=>7 [1,1,1,1,0,0,0,1,0,0,1,0]=>7 [1,1,1,1,0,0,0,1,0,1,0,0]=>8 [1,1,1,1,0,0,0,1,1,0,0,0]=>6 [1,1,1,1,0,0,1,0,0,0,1,0]=>6 [1,1,1,1,0,0,1,0,0,1,0,0]=>7 [1,1,1,1,0,0,1,0,1,0,0,0]=>7 [1,1,1,1,0,0,1,1,0,0,0,0]=>5 [1,1,1,1,0,1,0,0,0,0,1,0]=>5 [1,1,1,1,0,1,0,0,0,1,0,0]=>6 [1,1,1,1,0,1,0,0,1,0,0,0]=>6 [1,1,1,1,0,1,0,1,0,0,0,0]=>6 [1,1,1,1,0,1,1,0,0,0,0,0]=>4 [1,1,1,1,1,0,0,0,0,0,1,0]=>7 [1,1,1,1,1,0,0,0,0,1,0,0]=>6 [1,1,1,1,1,0,0,0,1,0,0,0]=>5 [1,1,1,1,1,0,0,1,0,0,0,0]=>4 [1,1,1,1,1,0,1,0,0,0,0,0]=>3 [1,1,1,1,1,1,0,0,0,0,0,0]=>7
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
Number of indecomposable reflexive modules in the corresponding Nakayama algebra.
Code
DeclareOperation("IsNthSyzygy",[IsList]);

InstallMethod(IsNthSyzygy, "for a representation of a quiver", [IsList],0,function(LIST)

local M, n, f, N, i, h,W;

M:=LIST[1];

n:=LIST[2];

N:=DualOfModule(NthSyzygy(DualOfModule(M),n));

W:=NthSyzygy(N,n);

if IsDirectSummand(M,W)=true
then
return(1);
else return(0);
fi;
end);


DeclareOperation("NumberOfReflexiveModules",[IsList]);

InstallMethod(NumberOfReflexiveModules, "for a representation of a quiver", [IsList],0,function(LIST)

local M, n, f, N, i, h,W;

L:=LIST[1];

A:=NakayamaAlgebra(L,GF(3));
L:=ARQuiver([A,1000])[2];
LL1:=Filtered(L,x->DominantDimensionOfModule(x,30)>=1);
LL2:=Filtered(LL1,x->IsNthSyzygy([x,2])=1);
return(Size(LL2));


end);
Created
Dec 30, 2017 at 17:27 by Rene Marczinzik
Updated
Dec 30, 2017 at 17:27 by Rene Marczinzik