edit this statistic or download as text // json
Identifier
Values
=>
Cc0002;cc-rep
[2]=>0 [1,1]=>2 [3]=>0 [2,1]=>1 [1,1,1]=>6 [4]=>0 [3,1]=>0 [2,2]=>2 [2,1,1]=>6 [1,1,1,1]=>24 [5]=>0 [4,1]=>0 [3,2]=>1 [3,1,1]=>2 [2,2,1]=>12 [2,1,1,1]=>36 [1,1,1,1,1]=>120 [6]=>0 [5,1]=>0 [4,2]=>0 [4,1,1]=>0 [3,3]=>2 [3,2,1]=>10 [3,1,1,1]=>24 [2,2,2]=>30 [2,2,1,1]=>84 [2,1,1,1,1]=>240 [1,1,1,1,1,1]=>720 [7]=>0 [6,1]=>0 [5,2]=>0 [5,1,1]=>0 [4,3]=>1 [4,2,1]=>3 [4,1,1,1]=>6 [3,3,1]=>18 [3,2,2]=>38 [3,2,1,1]=>96 [3,1,1,1,1]=>240 [2,2,2,1]=>246 [2,2,1,1,1]=>660 [2,1,1,1,1,1]=>1800 [1,1,1,1,1,1,1]=>5040 [8]=>0 [7,1]=>0 [6,2]=>0 [6,1,1]=>0 [5,3]=>0 [5,2,1]=>0 [5,1,1,1]=>0 [4,4]=>2 [4,3,1]=>14 [4,2,2]=>24 [4,2,1,1]=>54 [4,1,1,1,1]=>120 [3,3,2]=>74 [3,3,1,1]=>184 [3,2,2,1]=>384 [3,2,1,1,1]=>960 [3,1,1,1,1,1]=>2400 [2,2,2,2]=>864 [2,2,2,1,1]=>2220 [2,2,1,1,1,1]=>5760 [2,1,1,1,1,1,1]=>15120 [1,1,1,1,1,1,1,1]=>40320 [9]=>0 [8,1]=>0 [7,2]=>0 [7,1,1]=>0 [6,3]=>0 [6,2,1]=>0 [6,1,1,1]=>0 [5,4]=>1 [5,3,1]=>4 [5,2,2]=>6 [5,2,1,1]=>12 [5,1,1,1,1]=>24 [4,4,1]=>24 [4,3,2]=>79 [4,3,1,1]=>186 [4,2,2,1]=>336 [4,2,1,1,1]=>780 [4,1,1,1,1,1]=>1800 [3,3,3]=>174 [3,3,2,1]=>836 [3,3,1,1,1]=>2040 [3,2,2,2]=>1686 [3,2,2,1,1]=>4140 [3,2,1,1,1,1]=>10200 [3,1,1,1,1,1,1]=>25200 [2,2,2,2,1]=>8760 [2,2,2,1,1,1]=>21960 [2,2,1,1,1,1,1]=>55440 [2,1,1,1,1,1,1,1]=>141120 [1,1,1,1,1,1,1,1,1]=>362880 [10]=>0 [9,1]=>0 [8,2]=>0 [8,1,1]=>0 [7,3]=>0 [7,2,1]=>0 [7,1,1,1]=>0 [6,4]=>0 [6,3,1]=>0 [6,2,2]=>0 [6,2,1,1]=>0 [6,1,1,1,1]=>0 [5,5]=>2 [5,4,1]=>18 [5,3,2]=>44 [5,3,1,1]=>96 [5,2,2,1]=>156 [5,2,1,1,1]=>336 [5,1,1,1,1,1]=>720 [4,4,2]=>138 [4,4,1,1]=>324 [4,3,3]=>248 [4,3,2,1]=>1074 [4,3,1,1,1]=>2520 [4,2,2,2]=>1974 [4,2,2,1,1]=>4620 [4,2,1,1,1,1]=>10800 [4,1,1,1,1,1,1]=>25200 [3,3,3,1]=>2184 [3,3,2,2]=>4204 [3,3,2,1,1]=>10080 [3,3,1,1,1,1]=>24240 [3,2,2,2,1]=>19740 [3,2,2,1,1,1]=>47760 [3,2,1,1,1,1,1]=>115920 [3,1,1,1,1,1,1,1]=>282240 [2,2,2,2,2]=>39480 [2,2,2,2,1,1]=>96480 [2,2,2,1,1,1,1]=>236880 [2,2,1,1,1,1,1,1]=>584640 [2,1,1,1,1,1,1,1,1]=>1451520 [1,1,1,1,1,1,1,1,1,1]=>3628800 [11]=>0 [10,1]=>0 [9,2]=>0 [9,1,1]=>0 [8,3]=>0 [8,2,1]=>0 [8,1,1,1]=>0 [7,4]=>0 [7,3,1]=>0 [7,2,2]=>0 [7,2,1,1]=>0 [7,1,1,1,1]=>0 [6,5]=>1 [6,4,1]=>5 [6,3,2]=>10 [6,3,1,1]=>20 [6,2,2,1]=>30 [6,2,1,1,1]=>60 [6,1,1,1,1,1]=>120 [5,5,1]=>30 [5,4,2]=>135 [5,4,1,1]=>306 [5,3,3]=>212 [5,3,2,1]=>816 [5,3,1,1,1]=>1824 [5,2,2,2]=>1386 [5,2,2,1,1]=>3084 [5,2,1,1,1,1]=>6840 [5,1,1,1,1,1,1]=>15120 [4,4,3]=>480 [4,4,2,1]=>2016 [4,4,1,1,1]=>4680 [4,3,3,1]=>3566 [4,3,2,2]=>6516 [4,3,2,1,1]=>15180 [4,3,1,1,1,1]=>35400 [4,2,2,2,1]=>27780 [4,2,2,1,1,1]=>64800 [4,2,1,1,1,1,1]=>151200 [4,1,1,1,1,1,1,1]=>352800 [3,3,3,2]=>12336 [3,3,3,1,1]=>29040 [3,3,2,2,1]=>54660 [3,3,2,1,1,1]=>129480 [3,3,1,1,1,1,1]=>307440 [3,2,2,2,2]=>103800 [3,2,2,2,1,1]=>247080 [3,2,2,1,1,1,1]=>589680 [3,2,1,1,1,1,1,1]=>1411200 [3,1,1,1,1,1,1,1,1]=>3386880 [2,2,2,2,2,1]=>478080 [2,2,2,2,1,1,1]=>1149120 [2,2,2,1,1,1,1,1]=>2772000 [2,2,1,1,1,1,1,1,1]=>6713280 [2,1,1,1,1,1,1,1,1,1]=>16329600 [1,1,1,1,1,1,1,1,1,1,1]=>39916800 [12]=>0 [11,1]=>0 [10,2]=>0 [10,1,1]=>0 [9,3]=>0 [9,2,1]=>0 [9,1,1,1]=>0 [8,4]=>0 [8,3,1]=>0 [8,2,2]=>0 [8,2,1,1]=>0 [8,1,1,1,1]=>0 [7,5]=>0 [7,4,1]=>0 [7,3,2]=>0 [7,3,1,1]=>0 [7,2,2,1]=>0 [7,2,1,1,1]=>0 [7,1,1,1,1,1]=>0 [6,6]=>2 [6,5,1]=>22 [6,4,2]=>70 [6,4,1,1]=>150 [6,3,3]=>100 [6,3,2,1]=>340 [6,3,1,1,1]=>720 [6,2,2,2]=>540 [6,2,2,1,1]=>1140 [6,2,1,1,1,1]=>2400 [6,1,1,1,1,1,1]=>5040 [5,5,2]=>222 [5,5,1,1]=>504 [5,4,3]=>588 [5,4,2,1]=>2322 [5,4,1,1,1]=>5256 [5,3,3,1]=>3712 [5,3,2,2]=>6432 [5,3,2,1,1]=>14496 [5,3,1,1,1,1]=>32640 [5,2,2,2,1]=>24996 [5,2,2,1,1,1]=>56160 [5,2,1,1,1,1,1]=>126000 [5,1,1,1,1,1,1,1]=>282240 [4,4,4]=>1092 [4,4,3,1]=>7524 [4,4,2,2]=>13464 [4,4,2,1,1]=>30960 [4,4,1,1,1,1]=>71280 [4,3,3,2]=>23254 [4,3,3,1,1]=>53640 [4,3,2,2,1]=>96900 [4,3,2,1,1,1]=>224160 [4,3,1,1,1,1,1]=>519120 [4,2,2,2,2]=>175440 [4,2,2,2,1,1]=>406440 [4,2,2,1,1,1,1]=>942480 [4,2,1,1,1,1,1,1]=>2187360 [4,1,1,1,1,1,1,1,1]=>5080320 [3,3,3,3]=>41304 [3,3,3,2,1]=>175440 [3,3,3,1,1,1]=>408960 [3,3,2,2,2]=>322860 [3,3,2,2,1,1]=>755040 [3,3,2,1,1,1,1]=>1769040 [3,3,1,1,1,1,1,1]=>4152960 [3,2,2,2,2,1]=>1403520 [3,2,2,2,1,1,1]=>3301200 [3,2,2,1,1,1,1,1]=>7781760 [3,2,1,1,1,1,1,1,1]=>18385920 [3,1,1,1,1,1,1,1,1,1]=>43545600 [2,2,2,2,2,2]=>2631600 [2,2,2,2,2,1,1]=>6219360 [2,2,2,2,1,1,1,1]=>14736960 [2,2,2,1,1,1,1,1,1]=>35017920 [2,2,1,1,1,1,1,1,1,1]=>83462400 [2,1,1,1,1,1,1,1,1,1,1]=>199584000 [1,1,1,1,1,1,1,1,1,1,1,1]=>479001600
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders.
For a generating function $f$ the associated formal group law is the symmetric function $f(f^{(-1)}(x_1) + f^{(-1)}(x_2), \dots)$, see [1].
This statistic records the coefficient of the monomial symmetric function $m_\lambda$ in the formal group law for linear orders, with generating function $f(x) = x/(1-x)$, see [1, sec. 3.4].
This statistic gives the number of Smirnov arrangements of a set of letters with $\lambda_i$ of the $i$th letter, where a Smirnov word is a word with no repeated adjacent letters. e.g., [3,2,1] = > 10 since there are 10 Smirnov rearrangements of the word 'aaabbc': 'ababac', 'ababca', 'abacab', 'abacba', 'abcaba', 'acabab', 'acbaba', 'babaca', 'bacaba', 'cababa'.
References
[1] Taylor, J. Formal group laws and hypergraph colorings MathSciNet:3542357
Code
@cached_function
def data(n):
    """
    sage: data = data_linear_orders
    sage: n = 3; [(P, statistic(P)) for P in Partitions(n)]

    sage: findstat([(P, statistic(P)) for n in range(1,9) for P in Partitions(n)], depth=3)
    a new statistic on Cc0002: Integer partitions
    """
    R. = PowerSeriesRing(SR, default_prec=n+1)
    f = x/(1-x) # linear orders
    f_coefficients = f.list()
    f_rev = f.reverse()
    t = var('t')
    polynomials = (t*f_rev).exp().list()
    polynomials = [p.expand() for p in polynomials]
    return (f_coefficients, polynomials)

def statistic(P):
    f_coefficients, polynomials = data(P.size())
    p = SR(1)
    for i in P:
        p *= polynomials[i]
    p = p.expand()
    return sum(p.coefficient(t,n) * f_coefficients[n] * factorial(n)
               for n in range(p.degree(t)+1)).expand()

Created
Feb 02, 2018 at 19:51 by Martin Rubey
Updated
Feb 04, 2018 at 19:59 by Jair Taylor