Identifier
- St001113: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[1,0]=>0
[1,0,1,0]=>0
[1,1,0,0]=>0
[1,0,1,0,1,0]=>1
[1,0,1,1,0,0]=>0
[1,1,0,0,1,0]=>0
[1,1,0,1,0,0]=>0
[1,1,1,0,0,0]=>0
[1,0,1,0,1,0,1,0]=>1
[1,0,1,0,1,1,0,0]=>1
[1,0,1,1,0,0,1,0]=>0
[1,0,1,1,0,1,0,0]=>1
[1,0,1,1,1,0,0,0]=>0
[1,1,0,0,1,0,1,0]=>0
[1,1,0,0,1,1,0,0]=>0
[1,1,0,1,0,0,1,0]=>0
[1,1,0,1,0,1,0,0]=>1
[1,1,0,1,1,0,0,0]=>0
[1,1,1,0,0,0,1,0]=>0
[1,1,1,0,0,1,0,0]=>0
[1,1,1,0,1,0,0,0]=>0
[1,1,1,1,0,0,0,0]=>0
[1,0,1,0,1,0,1,0,1,0]=>1
[1,0,1,0,1,0,1,1,0,0]=>1
[1,0,1,0,1,1,0,0,1,0]=>1
[1,0,1,0,1,1,0,1,0,0]=>1
[1,0,1,0,1,1,1,0,0,0]=>1
[1,0,1,1,0,0,1,0,1,0]=>0
[1,0,1,1,0,0,1,1,0,0]=>0
[1,0,1,1,0,1,0,0,1,0]=>1
[1,0,1,1,0,1,0,1,0,0]=>1
[1,0,1,1,0,1,1,0,0,0]=>1
[1,0,1,1,1,0,0,0,1,0]=>0
[1,0,1,1,1,0,0,1,0,0]=>0
[1,0,1,1,1,0,1,0,0,0]=>1
[1,0,1,1,1,1,0,0,0,0]=>0
[1,1,0,0,1,0,1,0,1,0]=>0
[1,1,0,0,1,0,1,1,0,0]=>0
[1,1,0,0,1,1,0,0,1,0]=>0
[1,1,0,0,1,1,0,1,0,0]=>0
[1,1,0,0,1,1,1,0,0,0]=>0
[1,1,0,1,0,0,1,0,1,0]=>0
[1,1,0,1,0,0,1,1,0,0]=>0
[1,1,0,1,0,1,0,0,1,0]=>1
[1,1,0,1,0,1,0,1,0,0]=>2
[1,1,0,1,0,1,1,0,0,0]=>1
[1,1,0,1,1,0,0,0,1,0]=>0
[1,1,0,1,1,0,0,1,0,0]=>0
[1,1,0,1,1,0,1,0,0,0]=>1
[1,1,0,1,1,1,0,0,0,0]=>0
[1,1,1,0,0,0,1,0,1,0]=>0
[1,1,1,0,0,0,1,1,0,0]=>0
[1,1,1,0,0,1,0,0,1,0]=>0
[1,1,1,0,0,1,0,1,0,0]=>0
[1,1,1,0,0,1,1,0,0,0]=>0
[1,1,1,0,1,0,0,0,1,0]=>0
[1,1,1,0,1,0,0,1,0,0]=>0
[1,1,1,0,1,0,1,0,0,0]=>1
[1,1,1,0,1,1,0,0,0,0]=>0
[1,1,1,1,0,0,0,0,1,0]=>0
[1,1,1,1,0,0,0,1,0,0]=>0
[1,1,1,1,0,0,1,0,0,0]=>0
[1,1,1,1,0,1,0,0,0,0]=>0
[1,1,1,1,1,0,0,0,0,0]=>0
[1,0,1,0,1,0,1,0,1,0,1,0]=>1
[1,0,1,0,1,0,1,0,1,1,0,0]=>1
[1,0,1,0,1,0,1,1,0,0,1,0]=>1
[1,0,1,0,1,0,1,1,0,1,0,0]=>1
[1,0,1,0,1,0,1,1,1,0,0,0]=>1
[1,0,1,0,1,1,0,0,1,0,1,0]=>1
[1,0,1,0,1,1,0,0,1,1,0,0]=>1
[1,0,1,0,1,1,0,1,0,0,1,0]=>1
[1,0,1,0,1,1,0,1,0,1,0,0]=>1
[1,0,1,0,1,1,0,1,1,0,0,0]=>1
[1,0,1,0,1,1,1,0,0,0,1,0]=>1
[1,0,1,0,1,1,1,0,0,1,0,0]=>1
[1,0,1,0,1,1,1,0,1,0,0,0]=>1
[1,0,1,0,1,1,1,1,0,0,0,0]=>1
[1,0,1,1,0,0,1,0,1,0,1,0]=>0
[1,0,1,1,0,0,1,0,1,1,0,0]=>0
[1,0,1,1,0,0,1,1,0,0,1,0]=>0
[1,0,1,1,0,0,1,1,0,1,0,0]=>0
[1,0,1,1,0,0,1,1,1,0,0,0]=>0
[1,0,1,1,0,1,0,0,1,0,1,0]=>1
[1,0,1,1,0,1,0,0,1,1,0,0]=>1
[1,0,1,1,0,1,0,1,0,0,1,0]=>1
[1,0,1,1,0,1,0,1,0,1,0,0]=>2
[1,0,1,1,0,1,0,1,1,0,0,0]=>1
[1,0,1,1,0,1,1,0,0,0,1,0]=>1
[1,0,1,1,0,1,1,0,0,1,0,0]=>1
[1,0,1,1,0,1,1,0,1,0,0,0]=>1
[1,0,1,1,0,1,1,1,0,0,0,0]=>1
[1,0,1,1,1,0,0,0,1,0,1,0]=>0
[1,0,1,1,1,0,0,0,1,1,0,0]=>0
[1,0,1,1,1,0,0,1,0,0,1,0]=>0
[1,0,1,1,1,0,0,1,0,1,0,0]=>0
[1,0,1,1,1,0,0,1,1,0,0,0]=>0
[1,0,1,1,1,0,1,0,0,0,1,0]=>1
[1,0,1,1,1,0,1,0,0,1,0,0]=>1
[1,0,1,1,1,0,1,0,1,0,0,0]=>1
[1,0,1,1,1,0,1,1,0,0,0,0]=>1
[1,0,1,1,1,1,0,0,0,0,1,0]=>0
[1,0,1,1,1,1,0,0,0,1,0,0]=>0
[1,0,1,1,1,1,0,0,1,0,0,0]=>0
[1,0,1,1,1,1,0,1,0,0,0,0]=>1
[1,0,1,1,1,1,1,0,0,0,0,0]=>0
[1,1,0,0,1,0,1,0,1,0,1,0]=>0
[1,1,0,0,1,0,1,0,1,1,0,0]=>0
[1,1,0,0,1,0,1,1,0,0,1,0]=>0
[1,1,0,0,1,0,1,1,0,1,0,0]=>0
[1,1,0,0,1,0,1,1,1,0,0,0]=>0
[1,1,0,0,1,1,0,0,1,0,1,0]=>0
[1,1,0,0,1,1,0,0,1,1,0,0]=>0
[1,1,0,0,1,1,0,1,0,0,1,0]=>0
[1,1,0,0,1,1,0,1,0,1,0,0]=>0
[1,1,0,0,1,1,0,1,1,0,0,0]=>0
[1,1,0,0,1,1,1,0,0,0,1,0]=>0
[1,1,0,0,1,1,1,0,0,1,0,0]=>0
[1,1,0,0,1,1,1,0,1,0,0,0]=>0
[1,1,0,0,1,1,1,1,0,0,0,0]=>0
[1,1,0,1,0,0,1,0,1,0,1,0]=>0
[1,1,0,1,0,0,1,0,1,1,0,0]=>0
[1,1,0,1,0,0,1,1,0,0,1,0]=>0
[1,1,0,1,0,0,1,1,0,1,0,0]=>0
[1,1,0,1,0,0,1,1,1,0,0,0]=>0
[1,1,0,1,0,1,0,0,1,0,1,0]=>1
[1,1,0,1,0,1,0,0,1,1,0,0]=>1
[1,1,0,1,0,1,0,1,0,0,1,0]=>2
[1,1,0,1,0,1,0,1,0,1,0,0]=>2
[1,1,0,1,0,1,0,1,1,0,0,0]=>2
[1,1,0,1,0,1,1,0,0,0,1,0]=>1
[1,1,0,1,0,1,1,0,0,1,0,0]=>1
[1,1,0,1,0,1,1,0,1,0,0,0]=>2
[1,1,0,1,0,1,1,1,0,0,0,0]=>1
[1,1,0,1,1,0,0,0,1,0,1,0]=>0
[1,1,0,1,1,0,0,0,1,1,0,0]=>0
[1,1,0,1,1,0,0,1,0,0,1,0]=>0
[1,1,0,1,1,0,0,1,0,1,0,0]=>0
[1,1,0,1,1,0,0,1,1,0,0,0]=>0
[1,1,0,1,1,0,1,0,0,0,1,0]=>1
[1,1,0,1,1,0,1,0,0,1,0,0]=>1
[1,1,0,1,1,0,1,0,1,0,0,0]=>2
[1,1,0,1,1,0,1,1,0,0,0,0]=>1
[1,1,0,1,1,1,0,0,0,0,1,0]=>0
[1,1,0,1,1,1,0,0,0,1,0,0]=>0
[1,1,0,1,1,1,0,0,1,0,0,0]=>0
[1,1,0,1,1,1,0,1,0,0,0,0]=>1
[1,1,0,1,1,1,1,0,0,0,0,0]=>0
[1,1,1,0,0,0,1,0,1,0,1,0]=>0
[1,1,1,0,0,0,1,0,1,1,0,0]=>0
[1,1,1,0,0,0,1,1,0,0,1,0]=>0
[1,1,1,0,0,0,1,1,0,1,0,0]=>0
[1,1,1,0,0,0,1,1,1,0,0,0]=>0
[1,1,1,0,0,1,0,0,1,0,1,0]=>0
[1,1,1,0,0,1,0,0,1,1,0,0]=>0
[1,1,1,0,0,1,0,1,0,0,1,0]=>0
[1,1,1,0,0,1,0,1,0,1,0,0]=>0
[1,1,1,0,0,1,0,1,1,0,0,0]=>0
[1,1,1,0,0,1,1,0,0,0,1,0]=>0
[1,1,1,0,0,1,1,0,0,1,0,0]=>0
[1,1,1,0,0,1,1,0,1,0,0,0]=>0
[1,1,1,0,0,1,1,1,0,0,0,0]=>0
[1,1,1,0,1,0,0,0,1,0,1,0]=>0
[1,1,1,0,1,0,0,0,1,1,0,0]=>0
[1,1,1,0,1,0,0,1,0,0,1,0]=>0
[1,1,1,0,1,0,0,1,0,1,0,0]=>1
[1,1,1,0,1,0,0,1,1,0,0,0]=>0
[1,1,1,0,1,0,1,0,0,0,1,0]=>1
[1,1,1,0,1,0,1,0,0,1,0,0]=>1
[1,1,1,0,1,0,1,0,1,0,0,0]=>2
[1,1,1,0,1,0,1,1,0,0,0,0]=>1
[1,1,1,0,1,1,0,0,0,0,1,0]=>0
[1,1,1,0,1,1,0,0,0,1,0,0]=>0
[1,1,1,0,1,1,0,0,1,0,0,0]=>0
[1,1,1,0,1,1,0,1,0,0,0,0]=>1
[1,1,1,0,1,1,1,0,0,0,0,0]=>0
[1,1,1,1,0,0,0,0,1,0,1,0]=>0
[1,1,1,1,0,0,0,0,1,1,0,0]=>0
[1,1,1,1,0,0,0,1,0,0,1,0]=>0
[1,1,1,1,0,0,0,1,0,1,0,0]=>0
[1,1,1,1,0,0,0,1,1,0,0,0]=>0
[1,1,1,1,0,0,1,0,0,0,1,0]=>0
[1,1,1,1,0,0,1,0,0,1,0,0]=>0
[1,1,1,1,0,0,1,0,1,0,0,0]=>0
[1,1,1,1,0,0,1,1,0,0,0,0]=>0
[1,1,1,1,0,1,0,0,0,0,1,0]=>0
[1,1,1,1,0,1,0,0,0,1,0,0]=>0
[1,1,1,1,0,1,0,0,1,0,0,0]=>0
[1,1,1,1,0,1,0,1,0,0,0,0]=>1
[1,1,1,1,0,1,1,0,0,0,0,0]=>0
[1,1,1,1,1,0,0,0,0,0,1,0]=>0
[1,1,1,1,1,0,0,0,0,1,0,0]=>0
[1,1,1,1,1,0,0,0,1,0,0,0]=>0
[1,1,1,1,1,0,0,1,0,0,0,0]=>0
[1,1,1,1,1,0,1,0,0,0,0,0]=>0
[1,1,1,1,1,1,0,0,0,0,0,0]=>0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
Number of indecomposable projective non-injective modules with reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra.
References
[1] , Tachikawa, H. Reflexive Auslander-Reiten sequences MathSciNet:1048418 zbMATH:0686.16023
Code
DeclareOperation("IsReflexive", [IsList]); InstallMethod(IsReflexive, "for a representation of a quiver", [IsList],0,function(L) local A,SS,CoRegA,dd1,dd2; A:=L[1]; SS:=L[2]; CoRegA:=DirectSumOfQPAModules(IndecInjectiveModules(A)); dd1:=Size(ExtOverAlgebra(CoRegA,DTr(SS))[2]); dd2:=Size(ExtOverAlgebra(NthSyzygy(CoRegA,1),DTr(SS))[2]); return(dd1+dd2); end ); DeclareOperation("HasProjreflexiveARseq", [IsList]); InstallMethod(HasProjreflexiveARseq, "for a representation of a quiver", [IsList],0,function(L) local A,P,UU1,UU2; A:=L[1]; P:=L[2]; UU1:=DTr(P,-1); UU2:=Source(AlmostSplitSequence(UU1)[2]); return(IsReflexive([A,UU1])+IsReflexive([A,UU2])); end ); DeclareOperation("NumberreflexiveARseq22", [IsList]); InstallMethod(NumberreflexiveARseq22, "for a representation of a quiver", [IsList],0,function(L) local LL,A,projA,prnotinjA,tulu,tr,i; LL:=L[1]; A:=NakayamaAlgebra(LL,GF(3)); projA:=IndecProjectiveModules(A);prnotinjA:=Filtered(projA,x->IsInjectiveModule(x)=false); tulu:=[];for i in prnotinjA do Append(tulu,[HasProjreflexiveARseq([A,i])]);od; tr:=Filtered(tulu,x->(x=0)); return(Size(tr)); end );
Created
Feb 24, 2018 at 10:07 by Rene Marczinzik
Updated
Nov 26, 2018 at 16:58 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!