Identifier
- St001138: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[1,0]=>3
[1,0,1,0]=>5
[1,1,0,0]=>6
[1,0,1,0,1,0]=>7
[1,0,1,1,0,0]=>8
[1,1,0,0,1,0]=>8
[1,1,0,1,0,0]=>9
[1,1,1,0,0,0]=>10
[1,0,1,0,1,0,1,0]=>8
[1,0,1,0,1,1,0,0]=>10
[1,0,1,1,0,0,1,0]=>9
[1,0,1,1,0,1,0,0]=>11
[1,0,1,1,1,0,0,0]=>12
[1,1,0,0,1,0,1,0]=>10
[1,1,0,0,1,1,0,0]=>11
[1,1,0,1,0,0,1,0]=>11
[1,1,0,1,0,1,0,0]=>12
[1,1,0,1,1,0,0,0]=>13
[1,1,1,0,0,0,1,0]=>12
[1,1,1,0,0,1,0,0]=>13
[1,1,1,0,1,0,0,0]=>14
[1,1,1,1,0,0,0,0]=>15
[1,0,1,0,1,0,1,0,1,0]=>9
[1,0,1,0,1,0,1,1,0,0]=>11
[1,0,1,0,1,1,0,0,1,0]=>11
[1,0,1,0,1,1,0,1,0,0]=>12
[1,0,1,0,1,1,1,0,0,0]=>14
[1,0,1,1,0,0,1,0,1,0]=>11
[1,0,1,1,0,0,1,1,0,0]=>12
[1,0,1,1,0,1,0,0,1,0]=>12
[1,0,1,1,0,1,0,1,0,0]=>12
[1,0,1,1,0,1,1,0,0,0]=>15
[1,0,1,1,1,0,0,0,1,0]=>13
[1,0,1,1,1,0,0,1,0,0]=>13
[1,0,1,1,1,0,1,0,0,0]=>16
[1,0,1,1,1,1,0,0,0,0]=>17
[1,1,0,0,1,0,1,0,1,0]=>11
[1,1,0,0,1,0,1,1,0,0]=>13
[1,1,0,0,1,1,0,0,1,0]=>12
[1,1,0,0,1,1,0,1,0,0]=>14
[1,1,0,0,1,1,1,0,0,0]=>15
[1,1,0,1,0,0,1,0,1,0]=>12
[1,1,0,1,0,0,1,1,0,0]=>14
[1,1,0,1,0,1,0,0,1,0]=>12
[1,1,0,1,0,1,0,1,0,0]=>14
[1,1,0,1,0,1,1,0,0,0]=>16
[1,1,0,1,1,0,0,0,1,0]=>13
[1,1,0,1,1,0,0,1,0,0]=>15
[1,1,0,1,1,0,1,0,0,0]=>17
[1,1,0,1,1,1,0,0,0,0]=>18
[1,1,1,0,0,0,1,0,1,0]=>14
[1,1,1,0,0,0,1,1,0,0]=>15
[1,1,1,0,0,1,0,0,1,0]=>15
[1,1,1,0,0,1,0,1,0,0]=>16
[1,1,1,0,0,1,1,0,0,0]=>17
[1,1,1,0,1,0,0,0,1,0]=>16
[1,1,1,0,1,0,0,1,0,0]=>17
[1,1,1,0,1,0,1,0,0,0]=>18
[1,1,1,0,1,1,0,0,0,0]=>19
[1,1,1,1,0,0,0,0,1,0]=>17
[1,1,1,1,0,0,0,1,0,0]=>18
[1,1,1,1,0,0,1,0,0,0]=>19
[1,1,1,1,0,1,0,0,0,0]=>20
[1,1,1,1,1,0,0,0,0,0]=>21
[1,0,1,0,1,0,1,0,1,0,1,0]=>10
[1,0,1,0,1,0,1,0,1,1,0,0]=>12
[1,0,1,0,1,0,1,1,0,0,1,0]=>12
[1,0,1,0,1,0,1,1,0,1,0,0]=>13
[1,0,1,0,1,0,1,1,1,0,0,0]=>15
[1,0,1,0,1,1,0,0,1,0,1,0]=>13
[1,0,1,0,1,1,0,0,1,1,0,0]=>14
[1,0,1,0,1,1,0,1,0,0,1,0]=>13
[1,0,1,0,1,1,0,1,0,1,0,0]=>13
[1,0,1,0,1,1,0,1,1,0,0,0]=>16
[1,0,1,0,1,1,1,0,0,0,1,0]=>15
[1,0,1,0,1,1,1,0,0,1,0,0]=>15
[1,0,1,0,1,1,1,0,1,0,0,0]=>17
[1,0,1,0,1,1,1,1,0,0,0,0]=>19
[1,0,1,1,0,0,1,0,1,0,1,0]=>12
[1,0,1,1,0,0,1,0,1,1,0,0]=>14
[1,0,1,1,0,0,1,1,0,0,1,0]=>13
[1,0,1,1,0,0,1,1,0,1,0,0]=>15
[1,0,1,1,0,0,1,1,1,0,0,0]=>16
[1,0,1,1,0,1,0,0,1,0,1,0]=>13
[1,0,1,1,0,1,0,0,1,1,0,0]=>15
[1,0,1,1,0,1,0,1,0,0,1,0]=>12
[1,0,1,1,0,1,0,1,0,1,0,0]=>14
[1,0,1,1,0,1,0,1,1,0,0,0]=>16
[1,0,1,1,0,1,1,0,0,0,1,0]=>15
[1,0,1,1,0,1,1,0,0,1,0,0]=>16
[1,0,1,1,0,1,1,0,1,0,0,0]=>17
[1,0,1,1,0,1,1,1,0,0,0,0]=>20
[1,0,1,1,1,0,0,0,1,0,1,0]=>15
[1,0,1,1,1,0,0,0,1,1,0,0]=>16
[1,0,1,1,1,0,0,1,0,0,1,0]=>15
[1,0,1,1,1,0,0,1,0,1,0,0]=>16
[1,0,1,1,1,0,0,1,1,0,0,0]=>17
[1,0,1,1,1,0,1,0,0,0,1,0]=>17
[1,0,1,1,1,0,1,0,0,1,0,0]=>17
[1,0,1,1,1,0,1,0,1,0,0,0]=>17
[1,0,1,1,1,0,1,1,0,0,0,0]=>21
[1,0,1,1,1,1,0,0,0,0,1,0]=>18
[1,0,1,1,1,1,0,0,0,1,0,0]=>18
[1,0,1,1,1,1,0,0,1,0,0,0]=>18
[1,0,1,1,1,1,0,1,0,0,0,0]=>22
[1,0,1,1,1,1,1,0,0,0,0,0]=>23
[1,1,0,0,1,0,1,0,1,0,1,0]=>12
[1,1,0,0,1,0,1,0,1,1,0,0]=>14
[1,1,0,0,1,0,1,1,0,0,1,0]=>14
[1,1,0,0,1,0,1,1,0,1,0,0]=>15
[1,1,0,0,1,0,1,1,1,0,0,0]=>17
[1,1,0,0,1,1,0,0,1,0,1,0]=>14
[1,1,0,0,1,1,0,0,1,1,0,0]=>15
[1,1,0,0,1,1,0,1,0,0,1,0]=>15
[1,1,0,0,1,1,0,1,0,1,0,0]=>15
[1,1,0,0,1,1,0,1,1,0,0,0]=>18
[1,1,0,0,1,1,1,0,0,0,1,0]=>16
[1,1,0,0,1,1,1,0,0,1,0,0]=>16
[1,1,0,0,1,1,1,0,1,0,0,0]=>19
[1,1,0,0,1,1,1,1,0,0,0,0]=>20
[1,1,0,1,0,0,1,0,1,0,1,0]=>13
[1,1,0,1,0,0,1,0,1,1,0,0]=>15
[1,1,0,1,0,0,1,1,0,0,1,0]=>15
[1,1,0,1,0,0,1,1,0,1,0,0]=>16
[1,1,0,1,0,0,1,1,1,0,0,0]=>18
[1,1,0,1,0,1,0,0,1,0,1,0]=>13
[1,1,0,1,0,1,0,0,1,1,0,0]=>15
[1,1,0,1,0,1,0,1,0,0,1,0]=>14
[1,1,0,1,0,1,0,1,0,1,0,0]=>15
[1,1,0,1,0,1,0,1,1,0,0,0]=>18
[1,1,0,1,0,1,1,0,0,0,1,0]=>16
[1,1,0,1,0,1,1,0,0,1,0,0]=>16
[1,1,0,1,0,1,1,0,1,0,0,0]=>19
[1,1,0,1,0,1,1,1,0,0,0,0]=>21
[1,1,0,1,1,0,0,0,1,0,1,0]=>15
[1,1,0,1,1,0,0,0,1,1,0,0]=>16
[1,1,0,1,1,0,0,1,0,0,1,0]=>16
[1,1,0,1,1,0,0,1,0,1,0,0]=>16
[1,1,0,1,1,0,0,1,1,0,0,0]=>19
[1,1,0,1,1,0,1,0,0,0,1,0]=>17
[1,1,0,1,1,0,1,0,0,1,0,0]=>16
[1,1,0,1,1,0,1,0,1,0,0,0]=>19
[1,1,0,1,1,0,1,1,0,0,0,0]=>22
[1,1,0,1,1,1,0,0,0,0,1,0]=>18
[1,1,0,1,1,1,0,0,0,1,0,0]=>17
[1,1,0,1,1,1,0,0,1,0,0,0]=>20
[1,1,0,1,1,1,0,1,0,0,0,0]=>23
[1,1,0,1,1,1,1,0,0,0,0,0]=>24
[1,1,1,0,0,0,1,0,1,0,1,0]=>15
[1,1,1,0,0,0,1,0,1,1,0,0]=>17
[1,1,1,0,0,0,1,1,0,0,1,0]=>16
[1,1,1,0,0,0,1,1,0,1,0,0]=>18
[1,1,1,0,0,0,1,1,1,0,0,0]=>19
[1,1,1,0,0,1,0,0,1,0,1,0]=>16
[1,1,1,0,0,1,0,0,1,1,0,0]=>18
[1,1,1,0,0,1,0,1,0,0,1,0]=>16
[1,1,1,0,0,1,0,1,0,1,0,0]=>18
[1,1,1,0,0,1,0,1,1,0,0,0]=>20
[1,1,1,0,0,1,1,0,0,0,1,0]=>17
[1,1,1,0,0,1,1,0,0,1,0,0]=>19
[1,1,1,0,0,1,1,0,1,0,0,0]=>21
[1,1,1,0,0,1,1,1,0,0,0,0]=>22
[1,1,1,0,1,0,0,0,1,0,1,0]=>17
[1,1,1,0,1,0,0,0,1,1,0,0]=>19
[1,1,1,0,1,0,0,1,0,0,1,0]=>17
[1,1,1,0,1,0,0,1,0,1,0,0]=>19
[1,1,1,0,1,0,0,1,1,0,0,0]=>21
[1,1,1,0,1,0,1,0,0,0,1,0]=>17
[1,1,1,0,1,0,1,0,0,1,0,0]=>19
[1,1,1,0,1,0,1,0,1,0,0,0]=>21
[1,1,1,0,1,0,1,1,0,0,0,0]=>23
[1,1,1,0,1,1,0,0,0,0,1,0]=>18
[1,1,1,0,1,1,0,0,0,1,0,0]=>20
[1,1,1,0,1,1,0,0,1,0,0,0]=>22
[1,1,1,0,1,1,0,1,0,0,0,0]=>24
[1,1,1,0,1,1,1,0,0,0,0,0]=>25
[1,1,1,1,0,0,0,0,1,0,1,0]=>19
[1,1,1,1,0,0,0,0,1,1,0,0]=>20
[1,1,1,1,0,0,0,1,0,0,1,0]=>20
[1,1,1,1,0,0,0,1,0,1,0,0]=>21
[1,1,1,1,0,0,0,1,1,0,0,0]=>22
[1,1,1,1,0,0,1,0,0,0,1,0]=>21
[1,1,1,1,0,0,1,0,0,1,0,0]=>22
[1,1,1,1,0,0,1,0,1,0,0,0]=>23
[1,1,1,1,0,0,1,1,0,0,0,0]=>24
[1,1,1,1,0,1,0,0,0,0,1,0]=>22
[1,1,1,1,0,1,0,0,0,1,0,0]=>23
[1,1,1,1,0,1,0,0,1,0,0,0]=>24
[1,1,1,1,0,1,0,1,0,0,0,0]=>25
[1,1,1,1,0,1,1,0,0,0,0,0]=>26
[1,1,1,1,1,0,0,0,0,0,1,0]=>23
[1,1,1,1,1,0,0,0,0,1,0,0]=>24
[1,1,1,1,1,0,0,0,1,0,0,0]=>25
[1,1,1,1,1,0,0,1,0,0,0,0]=>26
[1,1,1,1,1,0,1,0,0,0,0,0]=>27
[1,1,1,1,1,1,0,0,0,0,0,0]=>28
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of indecomposable modules with projective dimension or injective dimension at most one in the corresponding Nakayama algebra.
References
[1] Marczinzik, René Upper bounds for the dominant dimension of Nakayama and related algebras. zbMATH:06820683
Code
DeclareOperation("numberofmoduleswithprojinjdimlessorequal1",[IsList]); InstallMethod(numberofmoduleswithprojinjdimlessorequal1, "for a representation of a quiver", [IsList],0,function(LIST) local M, n, f, N, i, h,A,g,r,L,LL,subsets1,subsets2,W,simA,G1,G2,G3,g1,g2,g3,WU,O,OF,RegA,LU; LU:=LIST[1]; A:=NakayamaAlgebra(LU,GF(3)); L:=ARQuiver([A,1000])[2]; LL:=Filtered(L,x->ProjDimensionOfModule(x,30)<=1 or InjDimensionOfModule(x,30)<=1); return(Size(LL)); end);
Created
Apr 09, 2018 at 14:03 by Rene Marczinzik
Updated
May 02, 2018 at 12:35 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!