edit this statistic or download as text // json
Identifier
Values
=>
Cc0022;cc-rep
['A',1]=>1 ['A',2]=>1 ['B',2]=>1 ['G',2]=>1 ['A',3]=>1 ['B',3]=>1 ['C',3]=>1 ['A',4]=>1 ['B',4]=>1 ['C',4]=>1 ['D',4]=>1 ['F',4]=>1 ['A',5]=>1 ['B',5]=>2 ['C',5]=>2 ['D',5]=>1 ['A',6]=>1 ['A',7]=>1 ['A',8]=>1 ['A',9]=>5 ['A',10]=>28
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The largest mu-coefficient of the Kazhdan Lusztig polynomial occurring in the Weyl group of given type.
The $\mu$-coefficient of the Kazhdan-Lusztig polynomial $P_{u,w}(q)$ is the coefficient of $q^{\frac{l(w)-l(u)-1}{2}}$ in $P_{u,w}(q)$.
References
[1] Warrington, G. S. Equivalence classes for the ยต-coefficient of Kazhdan-Lusztig polynomials in $S_n$ MathSciNet:2859901
Code
def statistic(C):
    W = CoxeterGroup(C, implementation='coxeter3')
    r = []
    for u in W:
	U = (W(v) for v in W.bruhat_interval(u, W.long_element()))
        next(U)
        for v in U:
            ldiff = v.length()-u.length()-1
            if is_even(ldiff):
                p = W.kazhdan_lusztig_polynomial(u, v)
                r.append(p[ldiff//2])
    return max(r)

Created
Apr 18, 2018 at 22:49 by Martin Rubey
Updated
Apr 18, 2018 at 22:49 by Martin Rubey