edit this statistic or download as text // json
Identifier
Values
=>
Cc0022;cc-rep
['A',1]=>2 ['A',2]=>5 ['B',2]=>7 ['G',2]=>11 ['A',3]=>12 ['B',3]=>24 ['C',3]=>24 ['A',4]=>27 ['B',4]=>77 ['C',4]=>77 ['D',4]=>45 ['F',4]=>237 ['A',5]=>58 ['B',5]=>238 ['C',5]=>238 ['D',5]=>158 ['A',6]=>121 ['B',6]=>723 ['C',6]=>723 ['D',6]=>531 ['E',6]=>1273 ['A',7]=>248 ['B',7]=>2180 ['C',7]=>2180 ['D',7]=>1732 ['E',7]=>17636
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of Grassmannian elements in the Coxeter group of the given type.
An element is Grassmannian if it has at most one descent.
Code
def statistic(C):
    return CoxeterGroup(C, implementation='coxeter3').grassmannian_elements().cardinality()

Created
Apr 19, 2018 at 00:24 by Martin Rubey
Updated
Apr 19, 2018 at 00:24 by Martin Rubey