Identifier
- St001149: Finite Cartan types ⟶ ℤ
Values
=>
Cc0022;cc-rep
['A',1]=>3
['A',2]=>8
['B',2]=>5
['G',2]=>7
['A',3]=>15
['B',3]=>7
['C',3]=>14
['A',4]=>24
['B',4]=>9
['C',4]=>27
['D',4]=>28
['F',4]=>26
['A',5]=>35
['B',5]=>11
['C',5]=>44
['D',5]=>45
['A',6]=>48
['B',6]=>13
['C',6]=>65
['D',6]=>66
['E',6]=>78
['A',7]=>63
['B',7]=>15
['C',7]=>90
['D',7]=>91
['E',7]=>133
['A',8]=>80
['B',8]=>17
['C',8]=>119
['D',8]=>120
['E',8]=>248
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The dimension of the quasi-minuscule representation of the Lie group of given type.
For every simple type there is a unique quasi-minuscule representation, and the unique dominant short root is its highest weight, see [2].
For every simple type there is a unique quasi-minuscule representation, and the unique dominant short root is its highest weight, see [2].
References
[1] wikipedia:Minuscule representation
[2] van Leeuwen, M. quasi-minuscule representations MathOverflow:129985
[2] van Leeuwen, M. quasi-minuscule representations MathOverflow:129985
Code
def statistic(C): n = C.rank() T = C.type() if T == "A": return n^2+2*n # adjoint if T == "B": return 2*n+1 # vector if T == "C": return 2*n^2-n-1 if T == "D": return 2*n^2-n # adjoint if T == "E": if n == 6: return 78 # adjoint if n == 7: return 133 # adjoint if n == 8: return 248 # adjoint if T == "F": return 26 if T == "G": return 7 def statistic_alternative(C): n = C.rank() T = C.type() W = WeylCharacterRing(C) for r in W.positive_roots(): if r.is_dominant() and r.is_short_root(): return W(r).degree() return W.adjoint_representation().degree()
Created
Apr 19, 2018 at 13:25 by Martin Rubey
Updated
Apr 19, 2018 at 14:48 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!