edit this statistic or download as text // json
Identifier
Values
=>
Cc0022;cc-rep
['A',1]=>2 ['A',2]=>4 ['B',2]=>8 ['G',2]=>10 ['A',3]=>11 ['B',3]=>33 ['C',3]=>33 ['A',4]=>19 ['B',4]=>193 ['C',4]=>193 ['D',4]=>98 ['F',4]=>246 ['A',5]=>56 ['B',5]=>953 ['C',5]=>953 ['D',5]=>197 ['A',6]=>96 ['B',6]=>7440 ['C',6]=>7440 ['D',6]=>1916 ['E',6]=>350 ['A',7]=>296 ['A',8]=>554 ['A',9]=>1593 ['A',10]=>3094
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of conjugacy classes of subgroups of the Weyl group of given type.
References
[1] Number of permutation groups of degree n; also number of conjugacy classes of subgroups of symmetric group S_n; also number of molecular species of degree n. OEIS:A000638
[2] Number of conjugacy classes of subgroups of the hyperoctahedral group. OEIS:A269890
Code
def statistic(C):
    return len(WeylGroup(C).as_permutation_group().conjugacy_classes_subgroups())

Created
Apr 21, 2018 at 23:43 by Martin Rubey
Updated
Oct 18, 2020 at 17:52 by Martin Rubey