edit this statistic or download as text // json
Identifier
Values
=>
Cc0022;cc-rep
['A',1]=>1 ['A',2]=>1 ['B',2]=>1 ['G',2]=>2 ['A',3]=>1 ['B',3]=>2 ['C',3]=>1 ['A',4]=>1 ['B',4]=>2 ['C',4]=>1 ['D',4]=>2 ['F',4]=>6 ['A',5]=>1 ['B',5]=>2 ['C',5]=>1 ['D',5]=>2 ['A',6]=>1 ['B',6]=>2 ['C',6]=>1 ['D',6]=>2 ['E',6]=>6 ['A',7]=>1 ['B',7]=>2 ['C',7]=>1 ['D',7]=>2 ['E',7]=>12 ['A',8]=>1 ['B',8]=>2 ['C',8]=>1 ['D',8]=>2 ['E',8]=>60 ['A',9]=>1 ['B',9]=>2 ['C',9]=>1 ['D',9]=>2 ['A',10]=>1 ['B',10]=>2 ['C',10]=>1 ['D',10]=>2
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The Dynkin index of the Lie algebra of given type.
This is the greatest common divisor of the Dynkin indices of the representations of the Lie algebra. It is computed in [2, prop.2.6].
References
[1] wikipedia:Dynkin index
[2] Laszlo, Y., Sorger, C. The line bundles on the moduli of parabolic $G$-bundles over curves and their sections MathSciNet:1456243
Code
def statistic(C):
    n = C.rank()
    T = C.type()
    if T in ["A", "C"]:
        return 1
    if T == "B":
        if n == 2:
            return 1
        if n >= 3:
            return 2
    if T == "D":
        if n >= 4:
            return 2
    if T == "E":
        if n == 6:
            return 6
        if n == 7:
            return 12
        if n == 8:
            return 60
    if T == "F":
        return 6
    if T == "G":
        return 2
Created
Apr 20, 2018 at 21:31 by Martin Rubey
Updated
Apr 20, 2018 at 21:31 by Martin Rubey