Identifier
- St001156: Finite Cartan types ⟶ ℤ
Values
=>
Cc0022;cc-rep
['A',1]=>1
['A',2]=>1
['B',2]=>1
['G',2]=>2
['A',3]=>1
['B',3]=>2
['C',3]=>1
['A',4]=>1
['B',4]=>2
['C',4]=>1
['D',4]=>2
['F',4]=>6
['A',5]=>1
['B',5]=>2
['C',5]=>1
['D',5]=>2
['A',6]=>1
['B',6]=>2
['C',6]=>1
['D',6]=>2
['E',6]=>6
['A',7]=>1
['B',7]=>2
['C',7]=>1
['D',7]=>2
['E',7]=>12
['A',8]=>1
['B',8]=>2
['C',8]=>1
['D',8]=>2
['E',8]=>60
['A',9]=>1
['B',9]=>2
['C',9]=>1
['D',9]=>2
['A',10]=>1
['B',10]=>2
['C',10]=>1
['D',10]=>2
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The Dynkin index of the Lie algebra of given type.
This is the greatest common divisor of the Dynkin indices of the representations of the Lie algebra. It is computed in [2, prop.2.6].
This is the greatest common divisor of the Dynkin indices of the representations of the Lie algebra. It is computed in [2, prop.2.6].
References
[1] wikipedia:Dynkin index
[2] Laszlo, Y., Sorger, C. The line bundles on the moduli of parabolic $G$-bundles over curves and their sections MathSciNet:1456243
[2] Laszlo, Y., Sorger, C. The line bundles on the moduli of parabolic $G$-bundles over curves and their sections MathSciNet:1456243
Code
def statistic(C): n = C.rank() T = C.type() if T in ["A", "C"]: return 1 if T == "B": if n == 2: return 1 if n >= 3: return 2 if T == "D": if n >= 4: return 2 if T == "E": if n == 6: return 6 if n == 7: return 12 if n == 8: return 60 if T == "F": return 6 if T == "G": return 2
Created
Apr 20, 2018 at 21:31 by Martin Rubey
Updated
Apr 20, 2018 at 21:31 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!