edit this statistic or download as text // json
Identifier
Values
=>
Cc0005;cc-rep
[1,0]=>1 [1,0,1,0]=>2 [1,1,0,0]=>1 [1,0,1,0,1,0]=>3 [1,0,1,1,0,0]=>3 [1,1,0,0,1,0]=>3 [1,1,0,1,0,0]=>3 [1,1,1,0,0,0]=>1 [1,0,1,0,1,0,1,0]=>4 [1,0,1,0,1,1,0,0]=>4 [1,0,1,1,0,0,1,0]=>3 [1,0,1,1,0,1,0,0]=>4 [1,0,1,1,1,0,0,0]=>4 [1,1,0,0,1,0,1,0]=>4 [1,1,0,0,1,1,0,0]=>4 [1,1,0,1,0,0,1,0]=>4 [1,1,0,1,0,1,0,0]=>4 [1,1,0,1,1,0,0,0]=>4 [1,1,1,0,0,0,1,0]=>4 [1,1,1,0,0,1,0,0]=>4 [1,1,1,0,1,0,0,0]=>4 [1,1,1,1,0,0,0,0]=>1 [1,0,1,0,1,0,1,0,1,0]=>5 [1,0,1,0,1,0,1,1,0,0]=>5 [1,0,1,0,1,1,0,0,1,0]=>5 [1,0,1,0,1,1,0,1,0,0]=>5 [1,0,1,0,1,1,1,0,0,0]=>5 [1,0,1,1,0,0,1,0,1,0]=>5 [1,0,1,1,0,0,1,1,0,0]=>4 [1,0,1,1,0,1,0,0,1,0]=>5 [1,0,1,1,0,1,0,1,0,0]=>5 [1,0,1,1,0,1,1,0,0,0]=>5 [1,0,1,1,1,0,0,0,1,0]=>4 [1,0,1,1,1,0,0,1,0,0]=>4 [1,0,1,1,1,0,1,0,0,0]=>5 [1,0,1,1,1,1,0,0,0,0]=>5 [1,1,0,0,1,0,1,0,1,0]=>5 [1,1,0,0,1,0,1,1,0,0]=>5 [1,1,0,0,1,1,0,0,1,0]=>4 [1,1,0,0,1,1,0,1,0,0]=>5 [1,1,0,0,1,1,1,0,0,0]=>5 [1,1,0,1,0,0,1,0,1,0]=>5 [1,1,0,1,0,0,1,1,0,0]=>5 [1,1,0,1,0,1,0,0,1,0]=>5 [1,1,0,1,0,1,0,1,0,0]=>4 [1,1,0,1,0,1,1,0,0,0]=>5 [1,1,0,1,1,0,0,0,1,0]=>4 [1,1,0,1,1,0,0,1,0,0]=>5 [1,1,0,1,1,0,1,0,0,0]=>5 [1,1,0,1,1,1,0,0,0,0]=>5 [1,1,1,0,0,0,1,0,1,0]=>5 [1,1,1,0,0,0,1,1,0,0]=>5 [1,1,1,0,0,1,0,0,1,0]=>5 [1,1,1,0,0,1,0,1,0,0]=>5 [1,1,1,0,0,1,1,0,0,0]=>5 [1,1,1,0,1,0,0,0,1,0]=>5 [1,1,1,0,1,0,0,1,0,0]=>5 [1,1,1,0,1,0,1,0,0,0]=>5 [1,1,1,0,1,1,0,0,0,0]=>5 [1,1,1,1,0,0,0,0,1,0]=>5 [1,1,1,1,0,0,0,1,0,0]=>5 [1,1,1,1,0,0,1,0,0,0]=>5 [1,1,1,1,0,1,0,0,0,0]=>5 [1,1,1,1,1,0,0,0,0,0]=>1 [1,0,1,0,1,0,1,0,1,0,1,0]=>6 [1,0,1,0,1,0,1,0,1,1,0,0]=>6 [1,0,1,0,1,0,1,1,0,0,1,0]=>6 [1,0,1,0,1,0,1,1,0,1,0,0]=>6 [1,0,1,0,1,0,1,1,1,0,0,0]=>6 [1,0,1,0,1,1,0,0,1,0,1,0]=>5 [1,0,1,0,1,1,0,0,1,1,0,0]=>6 [1,0,1,0,1,1,0,1,0,0,1,0]=>6 [1,0,1,0,1,1,0,1,0,1,0,0]=>6 [1,0,1,0,1,1,0,1,1,0,0,0]=>6 [1,0,1,0,1,1,1,0,0,0,1,0]=>6 [1,0,1,0,1,1,1,0,0,1,0,0]=>6 [1,0,1,0,1,1,1,0,1,0,0,0]=>6 [1,0,1,0,1,1,1,1,0,0,0,0]=>6 [1,0,1,1,0,0,1,0,1,0,1,0]=>6 [1,0,1,1,0,0,1,0,1,1,0,0]=>6 [1,0,1,1,0,0,1,1,0,0,1,0]=>4 [1,0,1,1,0,0,1,1,0,1,0,0]=>6 [1,0,1,1,0,0,1,1,1,0,0,0]=>5 [1,0,1,1,0,1,0,0,1,0,1,0]=>6 [1,0,1,1,0,1,0,0,1,1,0,0]=>6 [1,0,1,1,0,1,0,1,0,0,1,0]=>6 [1,0,1,1,0,1,0,1,0,1,0,0]=>6 [1,0,1,1,0,1,0,1,1,0,0,0]=>6 [1,0,1,1,0,1,1,0,0,0,1,0]=>6 [1,0,1,1,0,1,1,0,0,1,0,0]=>6 [1,0,1,1,0,1,1,0,1,0,0,0]=>6 [1,0,1,1,0,1,1,1,0,0,0,0]=>6 [1,0,1,1,1,0,0,0,1,0,1,0]=>6 [1,0,1,1,1,0,0,0,1,1,0,0]=>5 [1,0,1,1,1,0,0,1,0,0,1,0]=>6 [1,0,1,1,1,0,0,1,0,1,0,0]=>6 [1,0,1,1,1,0,0,1,1,0,0,0]=>5 [1,0,1,1,1,0,1,0,0,0,1,0]=>6 [1,0,1,1,1,0,1,0,0,1,0,0]=>6 [1,0,1,1,1,0,1,0,1,0,0,0]=>6 [1,0,1,1,1,0,1,1,0,0,0,0]=>6 [1,0,1,1,1,1,0,0,0,0,1,0]=>5 [1,0,1,1,1,1,0,0,0,1,0,0]=>5 [1,0,1,1,1,1,0,0,1,0,0,0]=>5 [1,0,1,1,1,1,0,1,0,0,0,0]=>6 [1,0,1,1,1,1,1,0,0,0,0,0]=>6 [1,1,0,0,1,0,1,0,1,0,1,0]=>6 [1,1,0,0,1,0,1,0,1,1,0,0]=>6 [1,1,0,0,1,0,1,1,0,0,1,0]=>6 [1,1,0,0,1,0,1,1,0,1,0,0]=>6 [1,1,0,0,1,0,1,1,1,0,0,0]=>6 [1,1,0,0,1,1,0,0,1,0,1,0]=>6 [1,1,0,0,1,1,0,0,1,1,0,0]=>5 [1,1,0,0,1,1,0,1,0,0,1,0]=>6 [1,1,0,0,1,1,0,1,0,1,0,0]=>6 [1,1,0,0,1,1,0,1,1,0,0,0]=>6 [1,1,0,0,1,1,1,0,0,0,1,0]=>5 [1,1,0,0,1,1,1,0,0,1,0,0]=>5 [1,1,0,0,1,1,1,0,1,0,0,0]=>6 [1,1,0,0,1,1,1,1,0,0,0,0]=>6 [1,1,0,1,0,0,1,0,1,0,1,0]=>6 [1,1,0,1,0,0,1,0,1,1,0,0]=>6 [1,1,0,1,0,0,1,1,0,0,1,0]=>6 [1,1,0,1,0,0,1,1,0,1,0,0]=>6 [1,1,0,1,0,0,1,1,1,0,0,0]=>6 [1,1,0,1,0,1,0,0,1,0,1,0]=>6 [1,1,0,1,0,1,0,0,1,1,0,0]=>6 [1,1,0,1,0,1,0,1,0,0,1,0]=>6 [1,1,0,1,0,1,0,1,0,1,0,0]=>6 [1,1,0,1,0,1,0,1,1,0,0,0]=>5 [1,1,0,1,0,1,1,0,0,0,1,0]=>6 [1,1,0,1,0,1,1,0,0,1,0,0]=>6 [1,1,0,1,0,1,1,0,1,0,0,0]=>5 [1,1,0,1,0,1,1,1,0,0,0,0]=>6 [1,1,0,1,1,0,0,0,1,0,1,0]=>6 [1,1,0,1,1,0,0,0,1,1,0,0]=>5 [1,1,0,1,1,0,0,1,0,0,1,0]=>6 [1,1,0,1,1,0,0,1,0,1,0,0]=>6 [1,1,0,1,1,0,0,1,1,0,0,0]=>6 [1,1,0,1,1,0,1,0,0,0,1,0]=>6 [1,1,0,1,1,0,1,0,0,1,0,0]=>6 [1,1,0,1,1,0,1,0,1,0,0,0]=>5 [1,1,0,1,1,0,1,1,0,0,0,0]=>6 [1,1,0,1,1,1,0,0,0,0,1,0]=>5 [1,1,0,1,1,1,0,0,0,1,0,0]=>5 [1,1,0,1,1,1,0,0,1,0,0,0]=>6 [1,1,0,1,1,1,0,1,0,0,0,0]=>6 [1,1,0,1,1,1,1,0,0,0,0,0]=>6 [1,1,1,0,0,0,1,0,1,0,1,0]=>6 [1,1,1,0,0,0,1,0,1,1,0,0]=>6 [1,1,1,0,0,0,1,1,0,0,1,0]=>5 [1,1,1,0,0,0,1,1,0,1,0,0]=>6 [1,1,1,0,0,0,1,1,1,0,0,0]=>6 [1,1,1,0,0,1,0,0,1,0,1,0]=>6 [1,1,1,0,0,1,0,0,1,1,0,0]=>6 [1,1,1,0,0,1,0,1,0,0,1,0]=>6 [1,1,1,0,0,1,0,1,0,1,0,0]=>5 [1,1,1,0,0,1,0,1,1,0,0,0]=>6 [1,1,1,0,0,1,1,0,0,0,1,0]=>5 [1,1,1,0,0,1,1,0,0,1,0,0]=>6 [1,1,1,0,0,1,1,0,1,0,0,0]=>6 [1,1,1,0,0,1,1,1,0,0,0,0]=>6 [1,1,1,0,1,0,0,0,1,0,1,0]=>6 [1,1,1,0,1,0,0,0,1,1,0,0]=>6 [1,1,1,0,1,0,0,1,0,0,1,0]=>6 [1,1,1,0,1,0,0,1,0,1,0,0]=>5 [1,1,1,0,1,0,0,1,1,0,0,0]=>6 [1,1,1,0,1,0,1,0,0,0,1,0]=>6 [1,1,1,0,1,0,1,0,0,1,0,0]=>5 [1,1,1,0,1,0,1,0,1,0,0,0]=>5 [1,1,1,0,1,0,1,1,0,0,0,0]=>6 [1,1,1,0,1,1,0,0,0,0,1,0]=>5 [1,1,1,0,1,1,0,0,0,1,0,0]=>6 [1,1,1,0,1,1,0,0,1,0,0,0]=>6 [1,1,1,0,1,1,0,1,0,0,0,0]=>6 [1,1,1,0,1,1,1,0,0,0,0,0]=>6 [1,1,1,1,0,0,0,0,1,0,1,0]=>6 [1,1,1,1,0,0,0,0,1,1,0,0]=>6 [1,1,1,1,0,0,0,1,0,0,1,0]=>6 [1,1,1,1,0,0,0,1,0,1,0,0]=>6 [1,1,1,1,0,0,0,1,1,0,0,0]=>6 [1,1,1,1,0,0,1,0,0,0,1,0]=>6 [1,1,1,1,0,0,1,0,0,1,0,0]=>6 [1,1,1,1,0,0,1,0,1,0,0,0]=>6 [1,1,1,1,0,0,1,1,0,0,0,0]=>6 [1,1,1,1,0,1,0,0,0,0,1,0]=>6 [1,1,1,1,0,1,0,0,0,1,0,0]=>6 [1,1,1,1,0,1,0,0,1,0,0,0]=>6 [1,1,1,1,0,1,0,1,0,0,0,0]=>6 [1,1,1,1,0,1,1,0,0,0,0,0]=>6 [1,1,1,1,1,0,0,0,0,0,1,0]=>6 [1,1,1,1,1,0,0,0,0,1,0,0]=>6 [1,1,1,1,1,0,0,0,1,0,0,0]=>6 [1,1,1,1,1,0,0,1,0,0,0,0]=>6 [1,1,1,1,1,0,1,0,0,0,0,0]=>6 [1,1,1,1,1,1,0,0,0,0,0,0]=>1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
Number of indecomposable injective modules whose socle has projective dimension at most g-1 when g denotes the global dimension in the corresponding Nakayama algebra.
References
[1] Marczinzik, René Upper bounds for the dominant dimension of Nakayama and related algebras. zbMATH:06820683
Code
DeclareOperation("numberindinjwithpdsocleatmostgldimminusone",[IsList]);

InstallMethod(numberindinjwithpdsocleatmostgldimminusone, "for a representation of a quiver", [IsList],0,function(LIST)

local A,g,projA,UU,priA,injA;

A:=LIST[1];
g:=GlobalDimensionOfAlgebra(A,100);
injA:=IndecInjectiveModules(A);UU:=Filtered(injA,x->ProjDimensionOfModule(SocleOfModule(x),30)<=g-1);
return(Size(UU));
end);


Created
Apr 29, 2018 at 14:14 by Rene Marczinzik
Updated
May 02, 2018 at 11:34 by Rene Marczinzik