edit this statistic or download as text // json
Identifier
Values
=>
[1]=>0 [1,2]=>0 [2,1]=>1 [1,2,3]=>0 [1,3,2]=>1 [2,1,3]=>1 [2,3,1]=>3 [3,1,2]=>3 [3,2,1]=>4 [1,2,3,4]=>0 [1,2,4,3]=>1 [1,3,2,4]=>1 [1,3,4,2]=>3 [1,4,2,3]=>3 [1,4,3,2]=>4 [2,1,3,4]=>1 [2,1,4,3]=>2 [2,3,1,4]=>3 [2,3,4,1]=>6 [2,4,1,3]=>5 [2,4,3,1]=>7 [3,1,2,4]=>3 [3,1,4,2]=>5 [3,2,1,4]=>4 [3,2,4,1]=>7 [3,4,1,2]=>8 [3,4,2,1]=>9 [4,1,2,3]=>6 [4,1,3,2]=>7 [4,2,1,3]=>7 [4,2,3,1]=>9 [4,3,1,2]=>9 [4,3,2,1]=>10
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The vector space dimension of $Ext_A^1(I_o,A)$ when $I_o$ is the tilting module corresponding to the permutation $o$ in the Auslander algebra $A$ of $K[x]/(x^n)$.
References
[1] Iyama, O., Zhang, X. Classifying τ-tilting modules over the Auslander algebra of $K[x]/(x^n)$ arXiv:1602.05037
Created
Apr 30, 2018 at 17:08 by Rene Marczinzik
Updated
May 02, 2018 at 11:21 by Rene Marczinzik