***************************************************************************** * www.FindStat.org - The Combinatorial Statistic Finder * * * * Copyright (C) 2019 The FindStatCrew * * * * This information is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * ***************************************************************************** ----------------------------------------------------------------------------- Statistic identifier: St001173 ----------------------------------------------------------------------------- Collection: Finite Cartan types ----------------------------------------------------------------------------- Description: The number of commutative positive roots in the root system of the given finite Cartan type. An upper ideal $I$ in the root poset $\Phi^+$ is called '''abelian''' if $\alpha,\beta \in I$ implies that $\alpha+\beta \notin \Phi^+$. A positive root is called '''commutative''' if the upper ideal it generates is abelian. The numbers are then given in [1, Theorem 4.4]. ----------------------------------------------------------------------------- References: [1] Panyushev, D. I. The poset of positive roots and its relatives [[MathSciNet:2218851]] [[arXiv:math/0502385]] ----------------------------------------------------------------------------- Code: def statistic(cartan_type): n = cartan_type.rank() if cartan_type.letter in ["A","B","C","F","G"]: n1,n2,n3 = 0,0,0 elif cartan_type.letter == "D": n1,n2,n3 = 1,1,n-3 elif cartan_type.letter == "E": n1,n2,n3 = 1,2,n-4 return binomial(n+1,2) + n1*n2*n3 ----------------------------------------------------------------------------- Statistic values: ['A',1] => 1 ['A',2] => 3 ['B',2] => 3 ['G',2] => 3 ['A',3] => 6 ['B',3] => 6 ['C',3] => 6 ['A',4] => 10 ['B',4] => 10 ['C',4] => 10 ['D',4] => 11 ['F',4] => 10 ['A',5] => 15 ['B',5] => 15 ['C',5] => 15 ['D',5] => 17 ['A',6] => 21 ['B',6] => 21 ['C',6] => 21 ['D',6] => 24 ['E',6] => 25 ['A',7] => 28 ['B',7] => 28 ['C',7] => 28 ['D',7] => 32 ['E',7] => 34 ['A',8] => 36 ['B',8] => 36 ['C',8] => 36 ['D',8] => 41 ['E',8] => 44 ['A',9] => 45 ['B',9] => 45 ['C',9] => 45 ['D',9] => 51 ['A',10] => 55 ['B',10] => 55 ['C',10] => 55 ['D',10] => 62 ----------------------------------------------------------------------------- Created: May 02, 2018 at 16:59 by Christian Stump ----------------------------------------------------------------------------- Last Updated: May 02, 2018 at 16:59 by Christian Stump