edit this statistic or download as text // json
Identifier
Values
=>
Cc0005;cc-rep
[1,0]=>1 [1,0,1,0]=>3 [1,1,0,0]=>1 [1,0,1,0,1,0]=>4 [1,0,1,1,0,0]=>3 [1,1,0,0,1,0]=>3 [1,1,0,1,0,0]=>3 [1,1,1,0,0,0]=>1 [1,0,1,0,1,0,1,0]=>5 [1,0,1,0,1,1,0,0]=>4 [1,0,1,1,0,0,1,0]=>5 [1,0,1,1,0,1,0,0]=>4 [1,0,1,1,1,0,0,0]=>3 [1,1,0,0,1,0,1,0]=>4 [1,1,0,0,1,1,0,0]=>3 [1,1,0,1,0,0,1,0]=>4 [1,1,0,1,0,1,0,0]=>5 [1,1,0,1,1,0,0,0]=>3 [1,1,1,0,0,0,1,0]=>3 [1,1,1,0,0,1,0,0]=>3 [1,1,1,0,1,0,0,0]=>3 [1,1,1,1,0,0,0,0]=>1 [1,0,1,0,1,0,1,0,1,0]=>6 [1,0,1,0,1,0,1,1,0,0]=>5 [1,0,1,0,1,1,0,0,1,0]=>6 [1,0,1,0,1,1,0,1,0,0]=>5 [1,0,1,0,1,1,1,0,0,0]=>4 [1,0,1,1,0,0,1,0,1,0]=>6 [1,0,1,1,0,0,1,1,0,0]=>5 [1,0,1,1,0,1,0,0,1,0]=>5 [1,0,1,1,0,1,0,1,0,0]=>6 [1,0,1,1,0,1,1,0,0,0]=>4 [1,0,1,1,1,0,0,0,1,0]=>5 [1,0,1,1,1,0,0,1,0,0]=>5 [1,0,1,1,1,0,1,0,0,0]=>4 [1,0,1,1,1,1,0,0,0,0]=>3 [1,1,0,0,1,0,1,0,1,0]=>5 [1,1,0,0,1,0,1,1,0,0]=>4 [1,1,0,0,1,1,0,0,1,0]=>5 [1,1,0,0,1,1,0,1,0,0]=>4 [1,1,0,0,1,1,1,0,0,0]=>3 [1,1,0,1,0,0,1,0,1,0]=>5 [1,1,0,1,0,0,1,1,0,0]=>4 [1,1,0,1,0,1,0,0,1,0]=>6 [1,1,0,1,0,1,0,1,0,0]=>6 [1,1,0,1,0,1,1,0,0,0]=>5 [1,1,0,1,1,0,0,0,1,0]=>5 [1,1,0,1,1,0,0,1,0,0]=>4 [1,1,0,1,1,0,1,0,0,0]=>5 [1,1,0,1,1,1,0,0,0,0]=>3 [1,1,1,0,0,0,1,0,1,0]=>4 [1,1,1,0,0,0,1,1,0,0]=>3 [1,1,1,0,0,1,0,0,1,0]=>4 [1,1,1,0,0,1,0,1,0,0]=>5 [1,1,1,0,0,1,1,0,0,0]=>3 [1,1,1,0,1,0,0,0,1,0]=>4 [1,1,1,0,1,0,0,1,0,0]=>5 [1,1,1,0,1,0,1,0,0,0]=>5 [1,1,1,0,1,1,0,0,0,0]=>3 [1,1,1,1,0,0,0,0,1,0]=>3 [1,1,1,1,0,0,0,1,0,0]=>3 [1,1,1,1,0,0,1,0,0,0]=>3 [1,1,1,1,0,1,0,0,0,0]=>3 [1,1,1,1,1,0,0,0,0,0]=>1 [1,0,1,0,1,0,1,0,1,0,1,0]=>7 [1,0,1,0,1,0,1,0,1,1,0,0]=>6 [1,0,1,0,1,0,1,1,0,0,1,0]=>7 [1,0,1,0,1,0,1,1,0,1,0,0]=>6 [1,0,1,0,1,0,1,1,1,0,0,0]=>5 [1,0,1,0,1,1,0,0,1,0,1,0]=>7 [1,0,1,0,1,1,0,0,1,1,0,0]=>6 [1,0,1,0,1,1,0,1,0,0,1,0]=>6 [1,0,1,0,1,1,0,1,0,1,0,0]=>7 [1,0,1,0,1,1,0,1,1,0,0,0]=>5 [1,0,1,0,1,1,1,0,0,0,1,0]=>6 [1,0,1,0,1,1,1,0,0,1,0,0]=>6 [1,0,1,0,1,1,1,0,1,0,0,0]=>5 [1,0,1,0,1,1,1,1,0,0,0,0]=>4 [1,0,1,1,0,0,1,0,1,0,1,0]=>7 [1,0,1,1,0,0,1,0,1,1,0,0]=>6 [1,0,1,1,0,0,1,1,0,0,1,0]=>7 [1,0,1,1,0,0,1,1,0,1,0,0]=>6 [1,0,1,1,0,0,1,1,1,0,0,0]=>5 [1,0,1,1,0,1,0,0,1,0,1,0]=>6 [1,0,1,1,0,1,0,0,1,1,0,0]=>5 [1,0,1,1,0,1,0,1,0,0,1,0]=>7 [1,0,1,1,0,1,0,1,0,1,0,0]=>7 [1,0,1,1,0,1,0,1,1,0,0,0]=>6 [1,0,1,1,0,1,1,0,0,0,1,0]=>6 [1,0,1,1,0,1,1,0,0,1,0,0]=>5 [1,0,1,1,0,1,1,0,1,0,0,0]=>6 [1,0,1,1,0,1,1,1,0,0,0,0]=>4 [1,0,1,1,1,0,0,0,1,0,1,0]=>6 [1,0,1,1,1,0,0,0,1,1,0,0]=>5 [1,0,1,1,1,0,0,1,0,0,1,0]=>6 [1,0,1,1,1,0,0,1,0,1,0,0]=>7 [1,0,1,1,1,0,0,1,1,0,0,0]=>5 [1,0,1,1,1,0,1,0,0,0,1,0]=>5 [1,0,1,1,1,0,1,0,0,1,0,0]=>6 [1,0,1,1,1,0,1,0,1,0,0,0]=>6 [1,0,1,1,1,0,1,1,0,0,0,0]=>4 [1,0,1,1,1,1,0,0,0,0,1,0]=>5 [1,0,1,1,1,1,0,0,0,1,0,0]=>5 [1,0,1,1,1,1,0,0,1,0,0,0]=>5 [1,0,1,1,1,1,0,1,0,0,0,0]=>4 [1,0,1,1,1,1,1,0,0,0,0,0]=>3 [1,1,0,0,1,0,1,0,1,0,1,0]=>6 [1,1,0,0,1,0,1,0,1,1,0,0]=>5 [1,1,0,0,1,0,1,1,0,0,1,0]=>6 [1,1,0,0,1,0,1,1,0,1,0,0]=>5 [1,1,0,0,1,0,1,1,1,0,0,0]=>4 [1,1,0,0,1,1,0,0,1,0,1,0]=>6 [1,1,0,0,1,1,0,0,1,1,0,0]=>5 [1,1,0,0,1,1,0,1,0,0,1,0]=>5 [1,1,0,0,1,1,0,1,0,1,0,0]=>6 [1,1,0,0,1,1,0,1,1,0,0,0]=>4 [1,1,0,0,1,1,1,0,0,0,1,0]=>5 [1,1,0,0,1,1,1,0,0,1,0,0]=>5 [1,1,0,0,1,1,1,0,1,0,0,0]=>4 [1,1,0,0,1,1,1,1,0,0,0,0]=>3 [1,1,0,1,0,0,1,0,1,0,1,0]=>6 [1,1,0,1,0,0,1,0,1,1,0,0]=>5 [1,1,0,1,0,0,1,1,0,0,1,0]=>6 [1,1,0,1,0,0,1,1,0,1,0,0]=>5 [1,1,0,1,0,0,1,1,1,0,0,0]=>4 [1,1,0,1,0,1,0,0,1,0,1,0]=>7 [1,1,0,1,0,1,0,0,1,1,0,0]=>6 [1,1,0,1,0,1,0,1,0,0,1,0]=>7 [1,1,0,1,0,1,0,1,0,1,0,0]=>7 [1,1,0,1,0,1,0,1,1,0,0,0]=>6 [1,1,0,1,0,1,1,0,0,0,1,0]=>7 [1,1,0,1,0,1,1,0,0,1,0,0]=>6 [1,1,0,1,0,1,1,0,1,0,0,0]=>6 [1,1,0,1,0,1,1,1,0,0,0,0]=>5 [1,1,0,1,1,0,0,0,1,0,1,0]=>6 [1,1,0,1,1,0,0,0,1,1,0,0]=>5 [1,1,0,1,1,0,0,1,0,0,1,0]=>5 [1,1,0,1,1,0,0,1,0,1,0,0]=>6 [1,1,0,1,1,0,0,1,1,0,0,0]=>4 [1,1,0,1,1,0,1,0,0,0,1,0]=>6 [1,1,0,1,1,0,1,0,0,1,0,0]=>7 [1,1,0,1,1,0,1,0,1,0,0,0]=>6 [1,1,0,1,1,0,1,1,0,0,0,0]=>5 [1,1,0,1,1,1,0,0,0,0,1,0]=>5 [1,1,0,1,1,1,0,0,0,1,0,0]=>5 [1,1,0,1,1,1,0,0,1,0,0,0]=>4 [1,1,0,1,1,1,0,1,0,0,0,0]=>5 [1,1,0,1,1,1,1,0,0,0,0,0]=>3 [1,1,1,0,0,0,1,0,1,0,1,0]=>5 [1,1,1,0,0,0,1,0,1,1,0,0]=>4 [1,1,1,0,0,0,1,1,0,0,1,0]=>5 [1,1,1,0,0,0,1,1,0,1,0,0]=>4 [1,1,1,0,0,0,1,1,1,0,0,0]=>3 [1,1,1,0,0,1,0,0,1,0,1,0]=>5 [1,1,1,0,0,1,0,0,1,1,0,0]=>4 [1,1,1,0,0,1,0,1,0,0,1,0]=>6 [1,1,1,0,0,1,0,1,0,1,0,0]=>6 [1,1,1,0,0,1,0,1,1,0,0,0]=>5 [1,1,1,0,0,1,1,0,0,0,1,0]=>5 [1,1,1,0,0,1,1,0,0,1,0,0]=>4 [1,1,1,0,0,1,1,0,1,0,0,0]=>5 [1,1,1,0,0,1,1,1,0,0,0,0]=>3 [1,1,1,0,1,0,0,0,1,0,1,0]=>5 [1,1,1,0,1,0,0,0,1,1,0,0]=>4 [1,1,1,0,1,0,0,1,0,0,1,0]=>6 [1,1,1,0,1,0,0,1,0,1,0,0]=>6 [1,1,1,0,1,0,0,1,1,0,0,0]=>5 [1,1,1,0,1,0,1,0,0,0,1,0]=>6 [1,1,1,0,1,0,1,0,0,1,0,0]=>6 [1,1,1,0,1,0,1,0,1,0,0,0]=>7 [1,1,1,0,1,0,1,1,0,0,0,0]=>5 [1,1,1,0,1,1,0,0,0,0,1,0]=>5 [1,1,1,0,1,1,0,0,0,1,0,0]=>4 [1,1,1,0,1,1,0,0,1,0,0,0]=>5 [1,1,1,0,1,1,0,1,0,0,0,0]=>5 [1,1,1,0,1,1,1,0,0,0,0,0]=>3 [1,1,1,1,0,0,0,0,1,0,1,0]=>4 [1,1,1,1,0,0,0,0,1,1,0,0]=>3 [1,1,1,1,0,0,0,1,0,0,1,0]=>4 [1,1,1,1,0,0,0,1,0,1,0,0]=>5 [1,1,1,1,0,0,0,1,1,0,0,0]=>3 [1,1,1,1,0,0,1,0,0,0,1,0]=>4 [1,1,1,1,0,0,1,0,0,1,0,0]=>5 [1,1,1,1,0,0,1,0,1,0,0,0]=>5 [1,1,1,1,0,0,1,1,0,0,0,0]=>3 [1,1,1,1,0,1,0,0,0,0,1,0]=>4 [1,1,1,1,0,1,0,0,0,1,0,0]=>5 [1,1,1,1,0,1,0,0,1,0,0,0]=>5 [1,1,1,1,0,1,0,1,0,0,0,0]=>5 [1,1,1,1,0,1,1,0,0,0,0,0]=>3 [1,1,1,1,1,0,0,0,0,0,1,0]=>3 [1,1,1,1,1,0,0,0,0,1,0,0]=>3 [1,1,1,1,1,0,0,0,1,0,0,0]=>3 [1,1,1,1,1,0,0,1,0,0,0,0]=>3 [1,1,1,1,1,0,1,0,0,0,0,0]=>3 [1,1,1,1,1,1,0,0,0,0,0,0]=>1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
Number of indecomposable injective modules with codominant dimension at least two in the corresponding Nakayama algebra.
Code

DeclareOperation("numberindinjwithcodomdimatleastk",[IsList]);

InstallMethod(numberindinjwithcodomdimatleastk, "for a representation of a quiver", [IsList],0,function(LIST)

local A,k,simA,WW,injA;

A:=LIST[1];
k:=LIST[2];
injA:=IndecInjectiveModules(A);
WW:=Filtered(injA,x->DominantDimensionOfModule(DualOfModule(x),30)>=k);
return(Size(WW));
end);


Created
May 12, 2018 at 00:23 by Rene Marczinzik
Updated
May 12, 2018 at 09:11 by Rene Marczinzik