edit this statistic or download as text // json
Identifier
Values
=>
Cc0005;cc-rep
[1,0]=>1 [1,0,1,0]=>1 [1,1,0,0]=>2 [1,0,1,0,1,0]=>1 [1,0,1,1,0,0]=>1 [1,1,0,0,1,0]=>1 [1,1,0,1,0,0]=>1 [1,1,1,0,0,0]=>3 [1,0,1,0,1,0,1,0]=>1 [1,0,1,0,1,1,0,0]=>1 [1,0,1,1,0,0,1,0]=>2 [1,0,1,1,0,1,0,0]=>0 [1,0,1,1,1,0,0,0]=>1 [1,1,0,0,1,0,1,0]=>1 [1,1,0,0,1,1,0,0]=>1 [1,1,0,1,0,0,1,0]=>1 [1,1,0,1,0,1,0,0]=>1 [1,1,0,1,1,0,0,0]=>1 [1,1,1,0,0,0,1,0]=>1 [1,1,1,0,0,1,0,0]=>1 [1,1,1,0,1,0,0,0]=>1 [1,1,1,1,0,0,0,0]=>4 [1,0,1,0,1,0,1,0,1,0]=>1 [1,0,1,0,1,0,1,1,0,0]=>1 [1,0,1,0,1,1,0,0,1,0]=>1 [1,0,1,0,1,1,0,1,0,0]=>0 [1,0,1,0,1,1,1,0,0,0]=>1 [1,0,1,1,0,0,1,0,1,0]=>1 [1,0,1,1,0,0,1,1,0,0]=>2 [1,0,1,1,0,1,0,0,1,0]=>0 [1,0,1,1,0,1,0,1,0,0]=>1 [1,0,1,1,0,1,1,0,0,0]=>0 [1,0,1,1,1,0,0,0,1,0]=>2 [1,0,1,1,1,0,0,1,0,0]=>2 [1,0,1,1,1,0,1,0,0,0]=>0 [1,0,1,1,1,1,0,0,0,0]=>1 [1,1,0,0,1,0,1,0,1,0]=>1 [1,1,0,0,1,0,1,1,0,0]=>1 [1,1,0,0,1,1,0,0,1,0]=>2 [1,1,0,0,1,1,0,1,0,0]=>0 [1,1,0,0,1,1,1,0,0,0]=>1 [1,1,0,1,0,0,1,0,1,0]=>1 [1,1,0,1,0,0,1,1,0,0]=>1 [1,1,0,1,0,1,0,0,1,0]=>1 [1,1,0,1,0,1,0,1,0,0]=>2 [1,1,0,1,0,1,1,0,0,0]=>1 [1,1,0,1,1,0,0,0,1,0]=>2 [1,1,0,1,1,0,0,1,0,0]=>0 [1,1,0,1,1,0,1,0,0,0]=>0 [1,1,0,1,1,1,0,0,0,0]=>1 [1,1,1,0,0,0,1,0,1,0]=>1 [1,1,1,0,0,0,1,1,0,0]=>1 [1,1,1,0,0,1,0,0,1,0]=>1 [1,1,1,0,0,1,0,1,0,0]=>1 [1,1,1,0,0,1,1,0,0,0]=>1 [1,1,1,0,1,0,0,0,1,0]=>1 [1,1,1,0,1,0,0,1,0,0]=>1 [1,1,1,0,1,0,1,0,0,0]=>1 [1,1,1,0,1,1,0,0,0,0]=>1 [1,1,1,1,0,0,0,0,1,0]=>1 [1,1,1,1,0,0,0,1,0,0]=>1 [1,1,1,1,0,0,1,0,0,0]=>1 [1,1,1,1,0,1,0,0,0,0]=>1 [1,1,1,1,1,0,0,0,0,0]=>5 [1,0,1,0,1,0,1,0,1,0,1,0]=>1 [1,0,1,0,1,0,1,0,1,1,0,0]=>1 [1,0,1,0,1,0,1,1,0,0,1,0]=>1 [1,0,1,0,1,0,1,1,0,1,0,0]=>0 [1,0,1,0,1,0,1,1,1,0,0,0]=>1 [1,0,1,0,1,1,0,0,1,0,1,0]=>2 [1,0,1,0,1,1,0,0,1,1,0,0]=>1 [1,0,1,0,1,1,0,1,0,0,1,0]=>0 [1,0,1,0,1,1,0,1,0,1,0,0]=>1 [1,0,1,0,1,1,0,1,1,0,0,0]=>0 [1,0,1,0,1,1,1,0,0,0,1,0]=>1 [1,0,1,0,1,1,1,0,0,1,0,0]=>1 [1,0,1,0,1,1,1,0,1,0,0,0]=>0 [1,0,1,0,1,1,1,1,0,0,0,0]=>1 [1,0,1,1,0,0,1,0,1,0,1,0]=>1 [1,0,1,1,0,0,1,0,1,1,0,0]=>1 [1,0,1,1,0,0,1,1,0,0,1,0]=>3 [1,0,1,1,0,0,1,1,0,1,0,0]=>0 [1,0,1,1,0,0,1,1,1,0,0,0]=>2 [1,0,1,1,0,1,0,0,1,0,1,0]=>0 [1,0,1,1,0,1,0,0,1,1,0,0]=>0 [1,0,1,1,0,1,0,1,0,0,1,0]=>1 [1,0,1,1,0,1,0,1,0,1,0,0]=>1 [1,0,1,1,0,1,0,1,1,0,0,0]=>1 [1,0,1,1,0,1,1,0,0,0,1,0]=>0 [1,0,1,1,0,1,1,0,0,1,0,0]=>0 [1,0,1,1,0,1,1,0,1,0,0,0]=>0 [1,0,1,1,0,1,1,1,0,0,0,0]=>0 [1,0,1,1,1,0,0,0,1,0,1,0]=>1 [1,0,1,1,1,0,0,0,1,1,0,0]=>2 [1,0,1,1,1,0,0,1,0,0,1,0]=>1 [1,0,1,1,1,0,0,1,0,1,0,0]=>1 [1,0,1,1,1,0,0,1,1,0,0,0]=>2 [1,0,1,1,1,0,1,0,0,0,1,0]=>0 [1,0,1,1,1,0,1,0,0,1,0,0]=>0 [1,0,1,1,1,0,1,0,1,0,0,0]=>1 [1,0,1,1,1,0,1,1,0,0,0,0]=>0 [1,0,1,1,1,1,0,0,0,0,1,0]=>2 [1,0,1,1,1,1,0,0,0,1,0,0]=>2 [1,0,1,1,1,1,0,0,1,0,0,0]=>2 [1,0,1,1,1,1,0,1,0,0,0,0]=>0 [1,0,1,1,1,1,1,0,0,0,0,0]=>1 [1,1,0,0,1,0,1,0,1,0,1,0]=>1 [1,1,0,0,1,0,1,0,1,1,0,0]=>1 [1,1,0,0,1,0,1,1,0,0,1,0]=>1 [1,1,0,0,1,0,1,1,0,1,0,0]=>0 [1,1,0,0,1,0,1,1,1,0,0,0]=>1 [1,1,0,0,1,1,0,0,1,0,1,0]=>1 [1,1,0,0,1,1,0,0,1,1,0,0]=>2 [1,1,0,0,1,1,0,1,0,0,1,0]=>0 [1,1,0,0,1,1,0,1,0,1,0,0]=>1 [1,1,0,0,1,1,0,1,1,0,0,0]=>0 [1,1,0,0,1,1,1,0,0,0,1,0]=>2 [1,1,0,0,1,1,1,0,0,1,0,0]=>2 [1,1,0,0,1,1,1,0,1,0,0,0]=>0 [1,1,0,0,1,1,1,1,0,0,0,0]=>1 [1,1,0,1,0,0,1,0,1,0,1,0]=>1 [1,1,0,1,0,0,1,0,1,1,0,0]=>1 [1,1,0,1,0,0,1,1,0,0,1,0]=>1 [1,1,0,1,0,0,1,1,0,1,0,0]=>0 [1,1,0,1,0,0,1,1,1,0,0,0]=>1 [1,1,0,1,0,1,0,0,1,0,1,0]=>1 [1,1,0,1,0,1,0,0,1,1,0,0]=>1 [1,1,0,1,0,1,0,1,0,0,1,0]=>1 [1,1,0,1,0,1,0,1,0,1,0,0]=>1 [1,1,0,1,0,1,0,1,1,0,0,0]=>2 [1,1,0,1,0,1,1,0,0,0,1,0]=>1 [1,1,0,1,0,1,1,0,0,1,0,0]=>0 [1,1,0,1,0,1,1,0,1,0,0,0]=>1 [1,1,0,1,0,1,1,1,0,0,0,0]=>1 [1,1,0,1,1,0,0,0,1,0,1,0]=>1 [1,1,0,1,1,0,0,0,1,1,0,0]=>2 [1,1,0,1,1,0,0,1,0,0,1,0]=>0 [1,1,0,1,1,0,0,1,0,1,0,0]=>1 [1,1,0,1,1,0,0,1,1,0,0,0]=>0 [1,1,0,1,1,0,1,0,0,0,1,0]=>0 [1,1,0,1,1,0,1,0,0,1,0,0]=>1 [1,1,0,1,1,0,1,0,1,0,0,0]=>1 [1,1,0,1,1,0,1,1,0,0,0,0]=>0 [1,1,0,1,1,1,0,0,0,0,1,0]=>2 [1,1,0,1,1,1,0,0,0,1,0,0]=>2 [1,1,0,1,1,1,0,0,1,0,0,0]=>0 [1,1,0,1,1,1,0,1,0,0,0,0]=>0 [1,1,0,1,1,1,1,0,0,0,0,0]=>1 [1,1,1,0,0,0,1,0,1,0,1,0]=>1 [1,1,1,0,0,0,1,0,1,1,0,0]=>1 [1,1,1,0,0,0,1,1,0,0,1,0]=>2 [1,1,1,0,0,0,1,1,0,1,0,0]=>0 [1,1,1,0,0,0,1,1,1,0,0,0]=>1 [1,1,1,0,0,1,0,0,1,0,1,0]=>1 [1,1,1,0,0,1,0,0,1,1,0,0]=>1 [1,1,1,0,0,1,0,1,0,0,1,0]=>1 [1,1,1,0,0,1,0,1,0,1,0,0]=>2 [1,1,1,0,0,1,0,1,1,0,0,0]=>1 [1,1,1,0,0,1,1,0,0,0,1,0]=>2 [1,1,1,0,0,1,1,0,0,1,0,0]=>0 [1,1,1,0,0,1,1,0,1,0,0,0]=>0 [1,1,1,0,0,1,1,1,0,0,0,0]=>1 [1,1,1,0,1,0,0,0,1,0,1,0]=>1 [1,1,1,0,1,0,0,0,1,1,0,0]=>1 [1,1,1,0,1,0,0,1,0,0,1,0]=>1 [1,1,1,0,1,0,0,1,0,1,0,0]=>2 [1,1,1,0,1,0,0,1,1,0,0,0]=>1 [1,1,1,0,1,0,1,0,0,0,1,0]=>1 [1,1,1,0,1,0,1,0,0,1,0,0]=>2 [1,1,1,0,1,0,1,0,1,0,0,0]=>2 [1,1,1,0,1,0,1,1,0,0,0,0]=>1 [1,1,1,0,1,1,0,0,0,0,1,0]=>2 [1,1,1,0,1,1,0,0,0,1,0,0]=>0 [1,1,1,0,1,1,0,0,1,0,0,0]=>0 [1,1,1,0,1,1,0,1,0,0,0,0]=>0 [1,1,1,0,1,1,1,0,0,0,0,0]=>1 [1,1,1,1,0,0,0,0,1,0,1,0]=>1 [1,1,1,1,0,0,0,0,1,1,0,0]=>1 [1,1,1,1,0,0,0,1,0,0,1,0]=>1 [1,1,1,1,0,0,0,1,0,1,0,0]=>1 [1,1,1,1,0,0,0,1,1,0,0,0]=>1 [1,1,1,1,0,0,1,0,0,0,1,0]=>1 [1,1,1,1,0,0,1,0,0,1,0,0]=>1 [1,1,1,1,0,0,1,0,1,0,0,0]=>1 [1,1,1,1,0,0,1,1,0,0,0,0]=>1 [1,1,1,1,0,1,0,0,0,0,1,0]=>1 [1,1,1,1,0,1,0,0,0,1,0,0]=>1 [1,1,1,1,0,1,0,0,1,0,0,0]=>1 [1,1,1,1,0,1,0,1,0,0,0,0]=>1 [1,1,1,1,0,1,1,0,0,0,0,0]=>1 [1,1,1,1,1,0,0,0,0,0,1,0]=>1 [1,1,1,1,1,0,0,0,0,1,0,0]=>1 [1,1,1,1,1,0,0,0,1,0,0,0]=>1 [1,1,1,1,1,0,0,1,0,0,0,0]=>1 [1,1,1,1,1,0,1,0,0,0,0,0]=>1 [1,1,1,1,1,1,0,0,0,0,0,0]=>6
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
Number of simple modules $S$ with $Ext_A^i(S,A)=0$ for all $i=0,1,...,g-1$ in the corresponding Nakayama algebra $A$ with global dimension $g$.
References
[1] Marczinzik, René Upper bounds for the dominant dimension of Nakayama and related algebras. zbMATH:06820683
Code
DeclareOperation("Isholonomic",[IsList]);

InstallMethod(Isholonomic, "for a representation of a quiver", [IsList],0,function(LIST)

local A,M,g,RegA,temp;

A:=LIST[1];

M:=LIST[2];
g:=GorensteinDimensionOfAlgebra(A,30);
RegA:=DirectSumOfQPAModules(IndecProjectiveModules(A));

temp:=[];Append(temp,[Size(HomOverAlgebra(M,RegA))]);for i in [0..g-2] do Append(temp,[Size(ExtOverAlgebra(NthSyzygy(M,i),RegA)[2])]);od;
if Sum(temp)=0 then return(1); else return(0);fi;
end);


DeclareOperation("Holonomicmodules",[IsList]);

InstallMethod(Holonomicmodules, "for a representation of a quiver", [IsList],0,function(LIST)

local A,M,g,RegA,temp,L,LL;

A:=LIST[1];

L:=SimpleModules(A);
LL:=Filtered(L,x->Isholonomic([A,x])=1);
return(Size(LL));
end);


Created
May 09, 2018 at 21:47 by Rene Marczinzik
Updated
May 09, 2018 at 21:47 by Rene Marczinzik