***************************************************************************** * www.FindStat.org - The Combinatorial Statistic Finder * * * * Copyright (C) 2019 The FindStatCrew * * * * This information is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * ***************************************************************************** ----------------------------------------------------------------------------- Statistic identifier: St001193 ----------------------------------------------------------------------------- Collection: Dyck paths ----------------------------------------------------------------------------- Description: The dimension of $Ext_A^1(A/AeA,A)$ in the corresponding Nakayama algebra $A$ such that $eA$ is a minimal faithful projective-injective module. ----------------------------------------------------------------------------- References: ----------------------------------------------------------------------------- Code: ----------------------------------------------------------------------------- Statistic values: [1,0] => 0 [1,0,1,0] => 0 [1,1,0,0] => 0 [1,0,1,0,1,0] => 0 [1,0,1,1,0,0] => 0 [1,1,0,0,1,0] => 0 [1,1,0,1,0,0] => 0 [1,1,1,0,0,0] => 0 [1,0,1,0,1,0,1,0] => 0 [1,0,1,0,1,1,0,0] => 0 [1,0,1,1,0,0,1,0] => 0 [1,0,1,1,0,1,0,0] => 0 [1,0,1,1,1,0,0,0] => 1 [1,1,0,0,1,0,1,0] => 0 [1,1,0,0,1,1,0,0] => 0 [1,1,0,1,0,0,1,0] => 0 [1,1,0,1,0,1,0,0] => 0 [1,1,0,1,1,0,0,0] => 0 [1,1,1,0,0,0,1,0] => 0 [1,1,1,0,0,1,0,0] => 0 [1,1,1,0,1,0,0,0] => 0 [1,1,1,1,0,0,0,0] => 0 [1,0,1,0,1,0,1,0,1,0] => 0 [1,0,1,0,1,0,1,1,0,0] => 0 [1,0,1,0,1,1,0,0,1,0] => 0 [1,0,1,0,1,1,0,1,0,0] => 0 [1,0,1,0,1,1,1,0,0,0] => 1 [1,0,1,1,0,0,1,0,1,0] => 0 [1,0,1,1,0,0,1,1,0,0] => 0 [1,0,1,1,0,1,0,0,1,0] => 0 [1,0,1,1,0,1,0,1,0,0] => 0 [1,0,1,1,0,1,1,0,0,0] => 0 [1,0,1,1,1,0,0,0,1,0] => 1 [1,0,1,1,1,0,0,1,0,0] => 1 [1,0,1,1,1,0,1,0,0,0] => 1 [1,0,1,1,1,1,0,0,0,0] => 3 [1,1,0,0,1,0,1,0,1,0] => 0 [1,1,0,0,1,0,1,1,0,0] => 0 [1,1,0,0,1,1,0,0,1,0] => 0 [1,1,0,0,1,1,0,1,0,0] => 0 [1,1,0,0,1,1,1,0,0,0] => 1 [1,1,0,1,0,0,1,0,1,0] => 0 [1,1,0,1,0,0,1,1,0,0] => 0 [1,1,0,1,0,1,0,0,1,0] => 0 [1,1,0,1,0,1,0,1,0,0] => 0 [1,1,0,1,0,1,1,0,0,0] => 0 [1,1,0,1,1,0,0,0,1,0] => 0 [1,1,0,1,1,0,0,1,0,0] => 0 [1,1,0,1,1,0,1,0,0,0] => 0 [1,1,0,1,1,1,0,0,0,0] => 1 [1,1,1,0,0,0,1,0,1,0] => 0 [1,1,1,0,0,0,1,1,0,0] => 0 [1,1,1,0,0,1,0,0,1,0] => 0 [1,1,1,0,0,1,0,1,0,0] => 0 [1,1,1,0,0,1,1,0,0,0] => 0 [1,1,1,0,1,0,0,0,1,0] => 0 [1,1,1,0,1,0,0,1,0,0] => 0 [1,1,1,0,1,0,1,0,0,0] => 0 [1,1,1,0,1,1,0,0,0,0] => 0 [1,1,1,1,0,0,0,0,1,0] => 0 [1,1,1,1,0,0,0,1,0,0] => 0 [1,1,1,1,0,0,1,0,0,0] => 0 [1,1,1,1,0,1,0,0,0,0] => 0 [1,1,1,1,1,0,0,0,0,0] => 0 [1,0,1,0,1,0,1,0,1,0,1,0] => 0 [1,0,1,0,1,0,1,0,1,1,0,0] => 0 [1,0,1,0,1,0,1,1,0,0,1,0] => 0 [1,0,1,0,1,0,1,1,0,1,0,0] => 0 [1,0,1,0,1,0,1,1,1,0,0,0] => 1 [1,0,1,0,1,1,0,0,1,0,1,0] => 0 [1,0,1,0,1,1,0,0,1,1,0,0] => 0 [1,0,1,0,1,1,0,1,0,0,1,0] => 0 [1,0,1,0,1,1,0,1,0,1,0,0] => 0 [1,0,1,0,1,1,0,1,1,0,0,0] => 0 [1,0,1,0,1,1,1,0,0,0,1,0] => 1 [1,0,1,0,1,1,1,0,0,1,0,0] => 1 [1,0,1,0,1,1,1,0,1,0,0,0] => 1 [1,0,1,0,1,1,1,1,0,0,0,0] => 3 [1,0,1,1,0,0,1,0,1,0,1,0] => 0 [1,0,1,1,0,0,1,0,1,1,0,0] => 0 [1,0,1,1,0,0,1,1,0,0,1,0] => 0 [1,0,1,1,0,0,1,1,0,1,0,0] => 0 [1,0,1,1,0,0,1,1,1,0,0,0] => 1 [1,0,1,1,0,1,0,0,1,0,1,0] => 0 [1,0,1,1,0,1,0,0,1,1,0,0] => 0 [1,0,1,1,0,1,0,1,0,0,1,0] => 0 [1,0,1,1,0,1,0,1,0,1,0,0] => 0 [1,0,1,1,0,1,0,1,1,0,0,0] => 0 [1,0,1,1,0,1,1,0,0,0,1,0] => 0 [1,0,1,1,0,1,1,0,0,1,0,0] => 0 [1,0,1,1,0,1,1,0,1,0,0,0] => 0 [1,0,1,1,0,1,1,1,0,0,0,0] => 1 [1,0,1,1,1,0,0,0,1,0,1,0] => 1 [1,0,1,1,1,0,0,0,1,1,0,0] => 1 [1,0,1,1,1,0,0,1,0,0,1,0] => 1 [1,0,1,1,1,0,0,1,0,1,0,0] => 1 [1,0,1,1,1,0,0,1,1,0,0,0] => 1 [1,0,1,1,1,0,1,0,0,0,1,0] => 1 [1,0,1,1,1,0,1,0,0,1,0,0] => 1 [1,0,1,1,1,0,1,0,1,0,0,0] => 1 [1,0,1,1,1,0,1,1,0,0,0,0] => 1 [1,0,1,1,1,1,0,0,0,0,1,0] => 3 [1,0,1,1,1,1,0,0,0,1,0,0] => 3 [1,0,1,1,1,1,0,0,1,0,0,0] => 3 [1,0,1,1,1,1,0,1,0,0,0,0] => 3 [1,0,1,1,1,1,1,0,0,0,0,0] => 6 [1,1,0,0,1,0,1,0,1,0,1,0] => 0 [1,1,0,0,1,0,1,0,1,1,0,0] => 0 [1,1,0,0,1,0,1,1,0,0,1,0] => 0 [1,1,0,0,1,0,1,1,0,1,0,0] => 0 [1,1,0,0,1,0,1,1,1,0,0,0] => 1 [1,1,0,0,1,1,0,0,1,0,1,0] => 0 [1,1,0,0,1,1,0,0,1,1,0,0] => 0 [1,1,0,0,1,1,0,1,0,0,1,0] => 0 [1,1,0,0,1,1,0,1,0,1,0,0] => 0 [1,1,0,0,1,1,0,1,1,0,0,0] => 0 [1,1,0,0,1,1,1,0,0,0,1,0] => 1 [1,1,0,0,1,1,1,0,0,1,0,0] => 1 [1,1,0,0,1,1,1,0,1,0,0,0] => 1 [1,1,0,0,1,1,1,1,0,0,0,0] => 3 [1,1,0,1,0,0,1,0,1,0,1,0] => 0 [1,1,0,1,0,0,1,0,1,1,0,0] => 0 [1,1,0,1,0,0,1,1,0,0,1,0] => 0 [1,1,0,1,0,0,1,1,0,1,0,0] => 0 [1,1,0,1,0,0,1,1,1,0,0,0] => 1 [1,1,0,1,0,1,0,0,1,0,1,0] => 0 [1,1,0,1,0,1,0,0,1,1,0,0] => 0 [1,1,0,1,0,1,0,1,0,0,1,0] => 0 [1,1,0,1,0,1,0,1,0,1,0,0] => 0 [1,1,0,1,0,1,0,1,1,0,0,0] => 0 [1,1,0,1,0,1,1,0,0,0,1,0] => 0 [1,1,0,1,0,1,1,0,0,1,0,0] => 0 [1,1,0,1,0,1,1,0,1,0,0,0] => 0 [1,1,0,1,0,1,1,1,0,0,0,0] => 1 [1,1,0,1,1,0,0,0,1,0,1,0] => 0 [1,1,0,1,1,0,0,0,1,1,0,0] => 0 [1,1,0,1,1,0,0,1,0,0,1,0] => 0 [1,1,0,1,1,0,0,1,0,1,0,0] => 0 [1,1,0,1,1,0,0,1,1,0,0,0] => 0 [1,1,0,1,1,0,1,0,0,0,1,0] => 0 [1,1,0,1,1,0,1,0,0,1,0,0] => 0 [1,1,0,1,1,0,1,0,1,0,0,0] => 0 [1,1,0,1,1,0,1,1,0,0,0,0] => 0 [1,1,0,1,1,1,0,0,0,0,1,0] => 1 [1,1,0,1,1,1,0,0,0,1,0,0] => 1 [1,1,0,1,1,1,0,0,1,0,0,0] => 1 [1,1,0,1,1,1,0,1,0,0,0,0] => 1 [1,1,0,1,1,1,1,0,0,0,0,0] => 3 [1,1,1,0,0,0,1,0,1,0,1,0] => 0 [1,1,1,0,0,0,1,0,1,1,0,0] => 0 [1,1,1,0,0,0,1,1,0,0,1,0] => 0 [1,1,1,0,0,0,1,1,0,1,0,0] => 0 [1,1,1,0,0,0,1,1,1,0,0,0] => 1 [1,1,1,0,0,1,0,0,1,0,1,0] => 0 [1,1,1,0,0,1,0,0,1,1,0,0] => 0 [1,1,1,0,0,1,0,1,0,0,1,0] => 0 [1,1,1,0,0,1,0,1,0,1,0,0] => 0 [1,1,1,0,0,1,0,1,1,0,0,0] => 0 [1,1,1,0,0,1,1,0,0,0,1,0] => 0 [1,1,1,0,0,1,1,0,0,1,0,0] => 0 [1,1,1,0,0,1,1,0,1,0,0,0] => 0 [1,1,1,0,0,1,1,1,0,0,0,0] => 1 [1,1,1,0,1,0,0,0,1,0,1,0] => 0 [1,1,1,0,1,0,0,0,1,1,0,0] => 0 [1,1,1,0,1,0,0,1,0,0,1,0] => 0 [1,1,1,0,1,0,0,1,0,1,0,0] => 0 [1,1,1,0,1,0,0,1,1,0,0,0] => 0 [1,1,1,0,1,0,1,0,0,0,1,0] => 0 [1,1,1,0,1,0,1,0,0,1,0,0] => 0 [1,1,1,0,1,0,1,0,1,0,0,0] => 0 [1,1,1,0,1,0,1,1,0,0,0,0] => 0 [1,1,1,0,1,1,0,0,0,0,1,0] => 0 [1,1,1,0,1,1,0,0,0,1,0,0] => 0 [1,1,1,0,1,1,0,0,1,0,0,0] => 0 [1,1,1,0,1,1,0,1,0,0,0,0] => 0 [1,1,1,0,1,1,1,0,0,0,0,0] => 1 [1,1,1,1,0,0,0,0,1,0,1,0] => 0 [1,1,1,1,0,0,0,0,1,1,0,0] => 0 [1,1,1,1,0,0,0,1,0,0,1,0] => 0 [1,1,1,1,0,0,0,1,0,1,0,0] => 0 [1,1,1,1,0,0,0,1,1,0,0,0] => 0 [1,1,1,1,0,0,1,0,0,0,1,0] => 0 [1,1,1,1,0,0,1,0,0,1,0,0] => 0 [1,1,1,1,0,0,1,0,1,0,0,0] => 0 [1,1,1,1,0,0,1,1,0,0,0,0] => 0 [1,1,1,1,0,1,0,0,0,0,1,0] => 0 [1,1,1,1,0,1,0,0,0,1,0,0] => 0 [1,1,1,1,0,1,0,0,1,0,0,0] => 0 [1,1,1,1,0,1,0,1,0,0,0,0] => 0 [1,1,1,1,0,1,1,0,0,0,0,0] => 0 [1,1,1,1,1,0,0,0,0,0,1,0] => 0 [1,1,1,1,1,0,0,0,0,1,0,0] => 0 [1,1,1,1,1,0,0,0,1,0,0,0] => 0 [1,1,1,1,1,0,0,1,0,0,0,0] => 0 [1,1,1,1,1,0,1,0,0,0,0,0] => 0 [1,1,1,1,1,1,0,0,0,0,0,0] => 0 ----------------------------------------------------------------------------- Created: May 13, 2018 at 11:41 by Rene Marczinzik ----------------------------------------------------------------------------- Last Updated: May 13, 2018 at 11:41 by Rene Marczinzik