Identifier
- St001195: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[1,0,1,0,1,0]=>0
[1,0,1,1,0,0]=>1
[1,1,0,0,1,0]=>0
[1,1,0,1,0,0]=>1
[1,1,1,0,0,0]=>1
[1,0,1,0,1,0,1,0]=>0
[1,0,1,0,1,1,0,0]=>1
[1,0,1,1,0,0,1,0]=>0
[1,0,1,1,0,1,0,0]=>1
[1,0,1,1,1,0,0,0]=>1
[1,1,0,0,1,0,1,0]=>0
[1,1,0,0,1,1,0,0]=>1
[1,1,0,1,0,0,1,0]=>0
[1,1,0,1,0,1,0,0]=>1
[1,1,0,1,1,0,0,0]=>1
[1,1,1,0,0,0,1,0]=>1
[1,1,1,0,0,1,0,0]=>1
[1,1,1,0,1,0,0,0]=>1
[1,1,1,1,0,0,0,0]=>1
[1,0,1,0,1,0,1,0,1,0]=>0
[1,0,1,0,1,0,1,1,0,0]=>1
[1,0,1,0,1,1,0,0,1,0]=>0
[1,0,1,0,1,1,0,1,0,0]=>1
[1,0,1,0,1,1,1,0,0,0]=>1
[1,0,1,1,0,0,1,0,1,0]=>0
[1,0,1,1,0,0,1,1,0,0]=>1
[1,0,1,1,0,1,0,0,1,0]=>0
[1,0,1,1,0,1,0,1,0,0]=>1
[1,0,1,1,0,1,1,0,0,0]=>1
[1,0,1,1,1,0,0,0,1,0]=>1
[1,0,1,1,1,0,0,1,0,0]=>1
[1,0,1,1,1,0,1,0,0,0]=>1
[1,0,1,1,1,1,0,0,0,0]=>1
[1,1,0,0,1,0,1,0,1,0]=>0
[1,1,0,0,1,0,1,1,0,0]=>1
[1,1,0,0,1,1,0,0,1,0]=>0
[1,1,0,0,1,1,0,1,0,0]=>1
[1,1,0,0,1,1,1,0,0,0]=>1
[1,1,0,1,0,0,1,0,1,0]=>0
[1,1,0,1,0,0,1,1,0,0]=>1
[1,1,0,1,0,1,0,0,1,0]=>0
[1,1,0,1,0,1,0,1,0,0]=>1
[1,1,0,1,0,1,1,0,0,0]=>1
[1,1,0,1,1,0,0,0,1,0]=>1
[1,1,0,1,1,0,0,1,0,0]=>1
[1,1,0,1,1,0,1,0,0,0]=>1
[1,1,0,1,1,1,0,0,0,0]=>1
[1,1,1,0,0,0,1,0,1,0]=>1
[1,1,1,0,0,0,1,1,0,0]=>1
[1,1,1,0,0,1,0,0,1,0]=>0
[1,1,1,0,0,1,0,1,0,0]=>1
[1,1,1,0,0,1,1,0,0,0]=>1
[1,1,1,0,1,0,0,0,1,0]=>1
[1,1,1,0,1,0,0,1,0,0]=>1
[1,1,1,0,1,0,1,0,0,0]=>1
[1,1,1,0,1,1,0,0,0,0]=>1
[1,1,1,1,0,0,0,0,1,0]=>1
[1,1,1,1,0,0,0,1,0,0]=>1
[1,1,1,1,0,0,1,0,0,0]=>1
[1,1,1,1,0,1,0,0,0,0]=>1
[1,1,1,1,1,0,0,0,0,0]=>1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$.
Code
DeclareOperation("gldimAAfAA",[IsList]); InstallMethod(gldimAAfAA, "for a representation of a quiver", [IsList],0,function(LIST) local A,k,injA,RegA,temp,CoRegA,priA,U,UU,g,g2,B,T,TT; A:=LIST[1]; projA:=IndecProjectiveModules(A);priA:=DirectSumOfQPAModules(Filtered(projA,x->IsInjectiveModule(x)=true));RegA:=DirectSumOfQPAModules(projA); T:=DualOfModule(priA);TT:=StarOfModule(T); U:=TraceOfModule(TT,RegA);UU:=CoKernel(U); B:=EndOfModuleAsQuiverAlgebra(UU)[3]; g:=GlobalDimensionOfAlgebra(B,30); return(g); end);
Created
May 14, 2018 at 10:36 by Rene Marczinzik
Updated
May 14, 2018 at 10:36 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!