Identifier
- St001200: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[1,0,1,0]=>2
[1,0,1,0,1,0]=>3
[1,0,1,1,0,0]=>2
[1,1,0,0,1,0]=>2
[1,1,0,1,0,0]=>2
[1,0,1,0,1,0,1,0]=>3
[1,0,1,0,1,1,0,0]=>3
[1,0,1,1,0,0,1,0]=>3
[1,0,1,1,0,1,0,0]=>3
[1,0,1,1,1,0,0,0]=>2
[1,1,0,0,1,0,1,0]=>3
[1,1,0,0,1,1,0,0]=>2
[1,1,0,1,0,0,1,0]=>3
[1,1,0,1,0,1,0,0]=>3
[1,1,0,1,1,0,0,0]=>2
[1,1,1,0,0,0,1,0]=>2
[1,1,1,0,0,1,0,0]=>2
[1,1,1,0,1,0,0,0]=>2
[1,0,1,0,1,0,1,0,1,0]=>3
[1,0,1,0,1,0,1,1,0,0]=>3
[1,0,1,0,1,1,0,0,1,0]=>3
[1,0,1,0,1,1,0,1,0,0]=>3
[1,0,1,0,1,1,1,0,0,0]=>3
[1,0,1,1,0,0,1,0,1,0]=>3
[1,0,1,1,0,0,1,1,0,0]=>3
[1,0,1,1,0,1,0,0,1,0]=>3
[1,0,1,1,0,1,0,1,0,0]=>4
[1,0,1,1,0,1,1,0,0,0]=>3
[1,0,1,1,1,0,0,0,1,0]=>3
[1,0,1,1,1,0,0,1,0,0]=>3
[1,0,1,1,1,0,1,0,0,0]=>3
[1,0,1,1,1,1,0,0,0,0]=>2
[1,1,0,0,1,0,1,0,1,0]=>3
[1,1,0,0,1,0,1,1,0,0]=>3
[1,1,0,0,1,1,0,0,1,0]=>3
[1,1,0,0,1,1,0,1,0,0]=>3
[1,1,0,0,1,1,1,0,0,0]=>2
[1,1,0,1,0,0,1,0,1,0]=>3
[1,1,0,1,0,0,1,1,0,0]=>3
[1,1,0,1,0,1,0,0,1,0]=>4
[1,1,0,1,0,1,0,1,0,0]=>4
[1,1,0,1,0,1,1,0,0,0]=>3
[1,1,0,1,1,0,0,0,1,0]=>3
[1,1,0,1,1,0,0,1,0,0]=>3
[1,1,0,1,1,0,1,0,0,0]=>3
[1,1,0,1,1,1,0,0,0,0]=>2
[1,1,1,0,0,0,1,0,1,0]=>3
[1,1,1,0,0,0,1,1,0,0]=>2
[1,1,1,0,0,1,0,0,1,0]=>3
[1,1,1,0,0,1,0,1,0,0]=>3
[1,1,1,0,0,1,1,0,0,0]=>2
[1,1,1,0,1,0,0,0,1,0]=>3
[1,1,1,0,1,0,0,1,0,0]=>3
[1,1,1,0,1,0,1,0,0,0]=>3
[1,1,1,0,1,1,0,0,0,0]=>2
[1,1,1,1,0,0,0,0,1,0]=>2
[1,1,1,1,0,0,0,1,0,0]=>2
[1,1,1,1,0,0,1,0,0,0]=>2
[1,1,1,1,0,1,0,0,0,0]=>2
search for individual values
searching the database for the individual values of this statistic
Description
The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Code
DeclareOperation("numbersimplesprojdimatmostkeAe",[IsList]); InstallMethod(numbersimplesprojdimatmostkeAe, "for a representation of a quiver", [IsList],0,function(LIST) local A,k,injA,RegA,temp,CoRegA,priA,U,UU,g,g2,B,T,TT,W,simB; A:=LIST[1]; k:=LIST[2]; projA:=IndecProjectiveModules(A);priA:=DirectSumOfQPAModules(Filtered(projA,x->IsInjectiveModule(x)=true)); B:=EndOfModuleAsQuiverAlgebra(priA)[3]; simB:=SimpleModules(B); W:=Filtered(simB,x->ProjDimensionOfModule(x,30)<=k); return(Size(W)); end);
Created
May 14, 2018 at 11:30 by Rene Marczinzik
Updated
May 14, 2018 at 11:30 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!