Identifier
- St001209: Parking functions ⟶ ℤ
Values
=>
[1]=>0
[1,1]=>0
[1,2]=>1
[2,1]=>0
[1,1,1]=>0
[1,1,2]=>1
[1,2,1]=>0
[2,1,1]=>0
[1,1,3]=>1
[1,3,1]=>1
[3,1,1]=>0
[1,2,2]=>2
[2,1,2]=>1
[2,2,1]=>0
[1,2,3]=>3
[1,3,2]=>2
[2,1,3]=>1
[2,3,1]=>1
[3,1,2]=>2
[3,2,1]=>0
[1,1,1,1]=>0
[1,1,1,2]=>1
[1,1,2,1]=>0
[1,2,1,1]=>0
[2,1,1,1]=>0
[1,1,1,3]=>1
[1,1,3,1]=>1
[1,3,1,1]=>0
[3,1,1,1]=>0
[1,1,1,4]=>1
[1,1,4,1]=>1
[1,4,1,1]=>1
[4,1,1,1]=>0
[1,1,2,2]=>2
[1,2,1,2]=>1
[1,2,2,1]=>0
[2,1,1,2]=>1
[2,1,2,1]=>0
[2,2,1,1]=>0
[1,1,2,3]=>2
[1,1,3,2]=>2
[1,2,1,3]=>1
[1,2,3,1]=>1
[1,3,1,2]=>2
[1,3,2,1]=>0
[2,1,1,3]=>1
[2,1,3,1]=>1
[2,3,1,1]=>0
[3,1,1,2]=>1
[3,1,2,1]=>0
[3,2,1,1]=>0
[1,1,2,4]=>3
[1,1,4,2]=>2
[1,2,1,4]=>1
[1,2,4,1]=>1
[1,4,1,2]=>2
[1,4,2,1]=>1
[2,1,1,4]=>1
[2,1,4,1]=>1
[2,4,1,1]=>1
[4,1,1,2]=>2
[4,1,2,1]=>0
[4,2,1,1]=>0
[1,1,3,3]=>2
[1,3,1,3]=>2
[1,3,3,1]=>2
[3,1,1,3]=>1
[3,1,3,1]=>1
[3,3,1,1]=>0
[1,1,3,4]=>3
[1,1,4,3]=>2
[1,3,1,4]=>3
[1,3,4,1]=>3
[1,4,1,3]=>2
[1,4,3,1]=>2
[3,1,1,4]=>1
[3,1,4,1]=>1
[3,4,1,1]=>1
[4,1,1,3]=>2
[4,1,3,1]=>2
[4,3,1,1]=>0
[1,2,2,2]=>3
[2,1,2,2]=>2
[2,2,1,2]=>1
[2,2,2,1]=>0
[1,2,2,3]=>4
[1,2,3,2]=>3
[1,3,2,2]=>3
[2,1,2,3]=>2
[2,1,3,2]=>2
[2,2,1,3]=>1
[2,2,3,1]=>1
[2,3,1,2]=>2
[2,3,2,1]=>0
[3,1,2,2]=>3
[3,2,1,2]=>1
[3,2,2,1]=>0
[1,2,2,4]=>4
[1,2,4,2]=>4
[1,4,2,2]=>3
[2,1,2,4]=>3
[2,1,4,2]=>2
[2,2,1,4]=>1
[2,2,4,1]=>1
[2,4,1,2]=>2
[2,4,2,1]=>1
[4,1,2,2]=>3
[4,2,1,2]=>2
[4,2,2,1]=>0
[1,2,3,3]=>5
[1,3,2,3]=>4
[1,3,3,2]=>3
[2,1,3,3]=>2
[2,3,1,3]=>2
[2,3,3,1]=>2
[3,1,2,3]=>4
[3,1,3,2]=>3
[3,2,1,3]=>1
[3,2,3,1]=>1
[3,3,1,2]=>3
[3,3,2,1]=>0
[1,2,3,4]=>6
[1,2,4,3]=>5
[1,3,2,4]=>4
[1,3,4,2]=>4
[1,4,2,3]=>5
[1,4,3,2]=>3
[2,1,3,4]=>3
[2,1,4,3]=>2
[2,3,1,4]=>3
[2,3,4,1]=>3
[2,4,1,3]=>2
[2,4,3,1]=>2
[3,1,2,4]=>4
[3,1,4,2]=>4
[3,2,1,4]=>1
[3,2,4,1]=>1
[3,4,1,2]=>4
[3,4,2,1]=>1
[4,1,2,3]=>5
[4,1,3,2]=>3
[4,2,1,3]=>2
[4,2,3,1]=>2
[4,3,1,2]=>3
[4,3,2,1]=>0
[1,1,1,1,1]=>0
[1,1,1,1,2]=>1
[1,1,1,2,1]=>0
[1,1,2,1,1]=>0
[1,2,1,1,1]=>0
[2,1,1,1,1]=>0
[1,1,1,1,3]=>1
[1,1,1,3,1]=>1
[1,1,3,1,1]=>0
[1,3,1,1,1]=>0
[3,1,1,1,1]=>0
[1,1,1,1,4]=>1
[1,1,1,4,1]=>1
[1,1,4,1,1]=>1
[1,4,1,1,1]=>0
[4,1,1,1,1]=>0
[1,1,1,1,5]=>1
[1,1,1,5,1]=>1
[1,1,5,1,1]=>1
[1,5,1,1,1]=>1
[5,1,1,1,1]=>0
[1,1,1,2,2]=>2
[1,1,2,1,2]=>1
[1,1,2,2,1]=>0
[1,2,1,1,2]=>1
[1,2,1,2,1]=>0
[1,2,2,1,1]=>0
[2,1,1,1,2]=>1
[2,1,1,2,1]=>0
[2,1,2,1,1]=>0
[2,2,1,1,1]=>0
[1,1,1,2,3]=>2
[1,1,1,3,2]=>2
[1,1,2,1,3]=>1
[1,1,2,3,1]=>1
[1,1,3,1,2]=>2
[1,1,3,2,1]=>0
[1,2,1,1,3]=>1
[1,2,1,3,1]=>1
[1,2,3,1,1]=>0
[1,3,1,1,2]=>1
[1,3,1,2,1]=>0
[1,3,2,1,1]=>0
[2,1,1,1,3]=>1
[2,1,1,3,1]=>1
[2,1,3,1,1]=>0
[2,3,1,1,1]=>0
[3,1,1,1,2]=>1
[3,1,1,2,1]=>0
[3,1,2,1,1]=>0
[3,2,1,1,1]=>0
[1,1,1,2,4]=>2
[1,1,1,4,2]=>2
[1,1,2,1,4]=>1
[1,1,2,4,1]=>1
[1,1,4,1,2]=>2
[1,1,4,2,1]=>1
[1,2,1,1,4]=>1
[1,2,1,4,1]=>1
[1,2,4,1,1]=>1
[1,4,1,1,2]=>2
[1,4,1,2,1]=>0
[1,4,2,1,1]=>0
[2,1,1,1,4]=>1
[2,1,1,4,1]=>1
[2,1,4,1,1]=>1
[2,4,1,1,1]=>0
[4,1,1,1,2]=>1
[4,1,1,2,1]=>0
[4,1,2,1,1]=>0
[4,2,1,1,1]=>0
[1,1,1,2,5]=>3
[1,1,1,5,2]=>2
[1,1,2,1,5]=>1
[1,1,2,5,1]=>1
[1,1,5,1,2]=>2
[1,1,5,2,1]=>1
[1,2,1,1,5]=>1
[1,2,1,5,1]=>1
[1,2,5,1,1]=>1
[1,5,1,1,2]=>2
[1,5,1,2,1]=>1
[1,5,2,1,1]=>1
[2,1,1,1,5]=>1
[2,1,1,5,1]=>1
[2,1,5,1,1]=>1
[2,5,1,1,1]=>1
[5,1,1,1,2]=>2
[5,1,1,2,1]=>0
[5,1,2,1,1]=>0
[5,2,1,1,1]=>0
[1,1,1,3,3]=>2
[1,1,3,1,3]=>2
[1,1,3,3,1]=>2
[1,3,1,1,3]=>1
[1,3,1,3,1]=>1
[1,3,3,1,1]=>0
[3,1,1,1,3]=>1
[3,1,1,3,1]=>1
[3,1,3,1,1]=>0
[3,3,1,1,1]=>0
[1,1,1,3,4]=>2
[1,1,1,4,3]=>2
[1,1,3,1,4]=>2
[1,1,3,4,1]=>2
[1,1,4,1,3]=>2
[1,1,4,3,1]=>2
[1,3,1,1,4]=>1
[1,3,1,4,1]=>1
[1,3,4,1,1]=>1
[1,4,1,1,3]=>2
[1,4,1,3,1]=>2
[1,4,3,1,1]=>0
[3,1,1,1,4]=>1
[3,1,1,4,1]=>1
[3,1,4,1,1]=>1
[3,4,1,1,1]=>0
[4,1,1,1,3]=>1
[4,1,1,3,1]=>1
[4,1,3,1,1]=>0
[4,3,1,1,1]=>0
[1,1,1,3,5]=>3
[1,1,1,5,3]=>2
[1,1,3,1,5]=>3
[1,1,3,5,1]=>3
[1,1,5,1,3]=>2
[1,1,5,3,1]=>2
[1,3,1,1,5]=>1
[1,3,1,5,1]=>1
[1,3,5,1,1]=>1
[1,5,1,1,3]=>2
[1,5,1,3,1]=>2
[1,5,3,1,1]=>1
[3,1,1,1,5]=>1
[3,1,1,5,1]=>1
[3,1,5,1,1]=>1
[3,5,1,1,1]=>1
[5,1,1,1,3]=>2
[5,1,1,3,1]=>2
[5,1,3,1,1]=>0
[5,3,1,1,1]=>0
[1,1,1,4,4]=>2
[1,1,4,1,4]=>2
[1,1,4,4,1]=>2
[1,4,1,1,4]=>2
[1,4,1,4,1]=>2
[1,4,4,1,1]=>2
[4,1,1,1,4]=>1
[4,1,1,4,1]=>1
[4,1,4,1,1]=>1
[4,4,1,1,1]=>0
[1,1,1,4,5]=>3
[1,1,1,5,4]=>2
[1,1,4,1,5]=>3
[1,1,4,5,1]=>3
[1,1,5,1,4]=>2
[1,1,5,4,1]=>2
[1,4,1,1,5]=>3
[1,4,1,5,1]=>3
[1,4,5,1,1]=>3
[1,5,1,1,4]=>2
[1,5,1,4,1]=>2
[1,5,4,1,1]=>2
[4,1,1,1,5]=>1
[4,1,1,5,1]=>1
[4,1,5,1,1]=>1
[4,5,1,1,1]=>1
[5,1,1,1,4]=>2
[5,1,1,4,1]=>2
[5,1,4,1,1]=>2
[5,4,1,1,1]=>0
[1,1,2,2,2]=>3
[1,2,1,2,2]=>2
[1,2,2,1,2]=>1
[1,2,2,2,1]=>0
[2,1,1,2,2]=>2
[2,1,2,1,2]=>1
[2,1,2,2,1]=>0
[2,2,1,1,2]=>1
[2,2,1,2,1]=>0
[2,2,2,1,1]=>0
[1,1,2,2,3]=>3
[1,1,2,3,2]=>3
[1,1,3,2,2]=>3
[1,2,1,2,3]=>2
[1,2,1,3,2]=>2
[1,2,2,1,3]=>1
[1,2,2,3,1]=>1
[1,2,3,1,2]=>2
[1,2,3,2,1]=>0
[1,3,1,2,2]=>3
[1,3,2,1,2]=>1
[1,3,2,2,1]=>0
[2,1,1,2,3]=>2
[2,1,1,3,2]=>2
[2,1,2,1,3]=>1
[2,1,2,3,1]=>1
[2,1,3,1,2]=>2
[2,1,3,2,1]=>0
[2,2,1,1,3]=>1
[2,2,1,3,1]=>1
[2,2,3,1,1]=>0
[2,3,1,1,2]=>1
[2,3,1,2,1]=>0
[2,3,2,1,1]=>0
[3,1,1,2,2]=>2
[3,1,2,1,2]=>1
[3,1,2,2,1]=>0
[3,2,1,1,2]=>1
[3,2,1,2,1]=>0
[3,2,2,1,1]=>0
[1,1,2,2,4]=>4
[1,1,2,4,2]=>3
[1,1,4,2,2]=>3
[1,2,1,2,4]=>2
[1,2,1,4,2]=>2
[1,2,2,1,4]=>1
[1,2,2,4,1]=>1
[1,2,4,1,2]=>2
[1,2,4,2,1]=>1
[1,4,1,2,2]=>3
[1,4,2,1,2]=>2
[1,4,2,2,1]=>0
[2,1,1,2,4]=>2
[2,1,1,4,2]=>2
[2,1,2,1,4]=>1
[2,1,2,4,1]=>1
[2,1,4,1,2]=>2
[2,1,4,2,1]=>1
[2,2,1,1,4]=>1
[2,2,1,4,1]=>1
[2,2,4,1,1]=>1
[2,4,1,1,2]=>2
[2,4,1,2,1]=>0
[2,4,2,1,1]=>0
[4,1,1,2,2]=>3
[4,1,2,1,2]=>1
[4,1,2,2,1]=>0
[4,2,1,1,2]=>1
[4,2,1,2,1]=>0
[4,2,2,1,1]=>0
[1,1,2,2,5]=>4
[1,1,2,5,2]=>4
[1,1,5,2,2]=>3
[1,2,1,2,5]=>3
[1,2,1,5,2]=>2
[1,2,2,1,5]=>1
[1,2,2,5,1]=>1
[1,2,5,1,2]=>2
[1,2,5,2,1]=>1
[1,5,1,2,2]=>3
[1,5,2,1,2]=>2
[1,5,2,2,1]=>1
[2,1,1,2,5]=>3
[2,1,1,5,2]=>2
[2,1,2,1,5]=>1
[2,1,2,5,1]=>1
[2,1,5,1,2]=>2
[2,1,5,2,1]=>1
[2,2,1,1,5]=>1
[2,2,1,5,1]=>1
[2,2,5,1,1]=>1
[2,5,1,1,2]=>2
[2,5,1,2,1]=>1
[2,5,2,1,1]=>1
[5,1,1,2,2]=>3
[5,1,2,1,2]=>2
[5,1,2,2,1]=>0
[5,2,1,1,2]=>2
[5,2,1,2,1]=>0
[5,2,2,1,1]=>0
[1,1,2,3,3]=>3
[1,1,3,2,3]=>3
[1,1,3,3,2]=>3
[1,2,1,3,3]=>2
[1,2,3,1,3]=>2
[1,2,3,3,1]=>2
[1,3,1,2,3]=>3
[1,3,1,3,2]=>3
[1,3,2,1,3]=>1
[1,3,2,3,1]=>1
[1,3,3,1,2]=>3
[1,3,3,2,1]=>0
[2,1,1,3,3]=>2
[2,1,3,1,3]=>2
[2,1,3,3,1]=>2
[2,3,1,1,3]=>1
[2,3,1,3,1]=>1
[2,3,3,1,1]=>0
[3,1,1,2,3]=>2
[3,1,1,3,2]=>2
[3,1,2,1,3]=>1
[3,1,2,3,1]=>1
[3,1,3,1,2]=>2
[3,1,3,2,1]=>0
[3,2,1,1,3]=>1
[3,2,1,3,1]=>1
[3,2,3,1,1]=>0
[3,3,1,1,2]=>1
[3,3,1,2,1]=>0
[3,3,2,1,1]=>0
[1,1,2,3,4]=>4
[1,1,2,4,3]=>3
[1,1,3,2,4]=>4
[1,1,3,4,2]=>3
[1,1,4,2,3]=>3
[1,1,4,3,2]=>3
[1,2,1,3,4]=>2
[1,2,1,4,3]=>2
[1,2,3,1,4]=>2
[1,2,3,4,1]=>2
[1,2,4,1,3]=>2
[1,2,4,3,1]=>2
[1,3,1,2,4]=>4
[1,3,1,4,2]=>3
[1,3,2,1,4]=>1
[1,3,2,4,1]=>1
[1,3,4,1,2]=>3
[1,3,4,2,1]=>1
[1,4,1,2,3]=>3
[1,4,1,3,2]=>3
[1,4,2,1,3]=>2
[1,4,2,3,1]=>2
[1,4,3,1,2]=>3
[1,4,3,2,1]=>0
[2,1,1,3,4]=>2
[2,1,1,4,3]=>2
[2,1,3,1,4]=>2
[2,1,3,4,1]=>2
[2,1,4,1,3]=>2
[2,1,4,3,1]=>2
[2,3,1,1,4]=>1
[2,3,1,4,1]=>1
[2,3,4,1,1]=>1
[2,4,1,1,3]=>2
[2,4,1,3,1]=>2
[2,4,3,1,1]=>0
[3,1,1,2,4]=>2
[3,1,1,4,2]=>2
[3,1,2,1,4]=>1
[3,1,2,4,1]=>1
[3,1,4,1,2]=>2
[3,1,4,2,1]=>1
[3,2,1,1,4]=>1
[3,2,1,4,1]=>1
[3,2,4,1,1]=>1
[3,4,1,1,2]=>2
[3,4,1,2,1]=>0
[3,4,2,1,1]=>0
[4,1,1,2,3]=>3
[4,1,1,3,2]=>3
[4,1,2,1,3]=>1
[4,1,2,3,1]=>1
[4,1,3,1,2]=>3
[4,1,3,2,1]=>0
[4,2,1,1,3]=>1
[4,2,1,3,1]=>1
[4,2,3,1,1]=>0
[4,3,1,1,2]=>1
[4,3,1,2,1]=>0
[4,3,2,1,1]=>0
[1,1,2,3,5]=>4
[1,1,2,5,3]=>4
[1,1,3,2,5]=>4
[1,1,3,5,2]=>4
[1,1,5,2,3]=>3
[1,1,5,3,2]=>3
[1,2,1,3,5]=>3
[1,2,1,5,3]=>2
[1,2,3,1,5]=>3
[1,2,3,5,1]=>3
[1,2,5,1,3]=>2
[1,2,5,3,1]=>2
[1,3,1,2,5]=>4
[1,3,1,5,2]=>4
[1,3,2,1,5]=>1
[1,3,2,5,1]=>1
[1,3,5,1,2]=>4
[1,3,5,2,1]=>1
[1,5,1,2,3]=>3
[1,5,1,3,2]=>3
[1,5,2,1,3]=>2
[1,5,2,3,1]=>2
[1,5,3,1,2]=>3
[1,5,3,2,1]=>1
[2,1,1,3,5]=>3
[2,1,1,5,3]=>2
[2,1,3,1,5]=>3
[2,1,3,5,1]=>3
[2,1,5,1,3]=>2
[2,1,5,3,1]=>2
[2,3,1,1,5]=>1
[2,3,1,5,1]=>1
[2,3,5,1,1]=>1
[2,5,1,1,3]=>2
[2,5,1,3,1]=>2
[2,5,3,1,1]=>1
[3,1,1,2,5]=>3
[3,1,1,5,2]=>2
[3,1,2,1,5]=>1
[3,1,2,5,1]=>1
[3,1,5,1,2]=>2
[3,1,5,2,1]=>1
[3,2,1,1,5]=>1
[3,2,1,5,1]=>1
[3,2,5,1,1]=>1
[3,5,1,1,2]=>2
[3,5,1,2,1]=>1
[3,5,2,1,1]=>1
[5,1,1,2,3]=>3
[5,1,1,3,2]=>3
[5,1,2,1,3]=>2
[5,1,2,3,1]=>2
[5,1,3,1,2]=>3
[5,1,3,2,1]=>0
[5,2,1,1,3]=>2
[5,2,1,3,1]=>2
[5,2,3,1,1]=>0
[5,3,1,1,2]=>2
[5,3,1,2,1]=>0
[5,3,2,1,1]=>0
[1,1,2,4,4]=>5
[1,1,4,2,4]=>4
[1,1,4,4,2]=>3
[1,2,1,4,4]=>2
[1,2,4,1,4]=>2
[1,2,4,4,1]=>2
[1,4,1,2,4]=>4
[1,4,1,4,2]=>3
[1,4,2,1,4]=>2
[1,4,2,4,1]=>2
[1,4,4,1,2]=>3
[1,4,4,2,1]=>2
[2,1,1,4,4]=>2
[2,1,4,1,4]=>2
[2,1,4,4,1]=>2
[2,4,1,1,4]=>2
[2,4,1,4,1]=>2
[2,4,4,1,1]=>2
[4,1,1,2,4]=>4
[4,1,1,4,2]=>3
[4,1,2,1,4]=>1
[4,1,2,4,1]=>1
[4,1,4,1,2]=>3
[4,1,4,2,1]=>1
[4,2,1,1,4]=>1
[4,2,1,4,1]=>1
[4,2,4,1,1]=>1
[4,4,1,1,2]=>3
[4,4,1,2,1]=>0
[4,4,2,1,1]=>0
[1,1,2,4,5]=>6
[1,1,2,5,4]=>5
[1,1,4,2,5]=>4
[1,1,4,5,2]=>4
[1,1,5,2,4]=>5
[1,1,5,4,2]=>3
[1,2,1,4,5]=>3
[1,2,1,5,4]=>2
[1,2,4,1,5]=>3
[1,2,4,5,1]=>3
[1,2,5,1,4]=>2
[1,2,5,4,1]=>2
[1,4,1,2,5]=>4
[1,4,1,5,2]=>4
[1,4,2,1,5]=>3
[1,4,2,5,1]=>3
[1,4,5,1,2]=>4
[1,4,5,2,1]=>3
[1,5,1,2,4]=>5
[1,5,1,4,2]=>3
[1,5,2,1,4]=>2
[1,5,2,4,1]=>2
[1,5,4,1,2]=>3
[1,5,4,2,1]=>2
[2,1,1,4,5]=>3
[2,1,1,5,4]=>2
[2,1,4,1,5]=>3
[2,1,4,5,1]=>3
[2,1,5,1,4]=>2
[2,1,5,4,1]=>2
[2,4,1,1,5]=>3
[2,4,1,5,1]=>3
[2,4,5,1,1]=>3
[2,5,1,1,4]=>2
[2,5,1,4,1]=>2
[2,5,4,1,1]=>2
[4,1,1,2,5]=>4
[4,1,1,5,2]=>4
[4,1,2,1,5]=>1
[4,1,2,5,1]=>1
[4,1,5,1,2]=>4
[4,1,5,2,1]=>1
[4,2,1,1,5]=>1
[4,2,1,5,1]=>1
[4,2,5,1,1]=>1
[4,5,1,1,2]=>4
[4,5,1,2,1]=>1
[4,5,2,1,1]=>1
[5,1,1,2,4]=>5
[5,1,1,4,2]=>3
[5,1,2,1,4]=>2
[5,1,2,4,1]=>2
[5,1,4,1,2]=>3
[5,1,4,2,1]=>2
[5,2,1,1,4]=>2
[5,2,1,4,1]=>2
[5,2,4,1,1]=>2
[5,4,1,1,2]=>3
[5,4,1,2,1]=>0
[5,4,2,1,1]=>0
[1,1,3,3,3]=>3
[1,3,1,3,3]=>3
[1,3,3,1,3]=>3
[1,3,3,3,1]=>3
[3,1,1,3,3]=>2
[3,1,3,1,3]=>2
[3,1,3,3,1]=>2
[3,3,1,1,3]=>1
[3,3,1,3,1]=>1
[3,3,3,1,1]=>0
[1,1,3,3,4]=>4
[1,1,3,4,3]=>3
[1,1,4,3,3]=>3
[1,3,1,3,4]=>4
[1,3,1,4,3]=>3
[1,3,3,1,4]=>4
[1,3,3,4,1]=>4
[1,3,4,1,3]=>3
[1,3,4,3,1]=>3
[1,4,1,3,3]=>3
[1,4,3,1,3]=>3
[1,4,3,3,1]=>3
[3,1,1,3,4]=>2
[3,1,1,4,3]=>2
[3,1,3,1,4]=>2
[3,1,3,4,1]=>2
[3,1,4,1,3]=>2
[3,1,4,3,1]=>2
[3,3,1,1,4]=>1
[3,3,1,4,1]=>1
[3,3,4,1,1]=>1
[3,4,1,1,3]=>2
[3,4,1,3,1]=>2
[3,4,3,1,1]=>0
[4,1,1,3,3]=>3
[4,1,3,1,3]=>3
[4,1,3,3,1]=>3
[4,3,1,1,3]=>1
[4,3,1,3,1]=>1
[4,3,3,1,1]=>0
[1,1,3,3,5]=>4
[1,1,3,5,3]=>4
[1,1,5,3,3]=>3
[1,3,1,3,5]=>4
[1,3,1,5,3]=>4
[1,3,3,1,5]=>4
[1,3,3,5,1]=>4
[1,3,5,1,3]=>4
[1,3,5,3,1]=>4
[1,5,1,3,3]=>3
[1,5,3,1,3]=>3
[1,5,3,3,1]=>3
[3,1,1,3,5]=>3
[3,1,1,5,3]=>2
[3,1,3,1,5]=>3
[3,1,3,5,1]=>3
[3,1,5,1,3]=>2
[3,1,5,3,1]=>2
[3,3,1,1,5]=>1
[3,3,1,5,1]=>1
[3,3,5,1,1]=>1
[3,5,1,1,3]=>2
[3,5,1,3,1]=>2
[3,5,3,1,1]=>1
[5,1,1,3,3]=>3
[5,1,3,1,3]=>3
[5,1,3,3,1]=>3
[5,3,1,1,3]=>2
[5,3,1,3,1]=>2
[5,3,3,1,1]=>0
[1,1,3,4,4]=>5
[1,1,4,3,4]=>4
[1,1,4,4,3]=>3
[1,3,1,4,4]=>5
[1,3,4,1,4]=>5
[1,3,4,4,1]=>5
[1,4,1,3,4]=>4
[1,4,1,4,3]=>3
[1,4,3,1,4]=>4
[1,4,3,4,1]=>4
[1,4,4,1,3]=>3
[1,4,4,3,1]=>3
[3,1,1,4,4]=>2
[3,1,4,1,4]=>2
[3,1,4,4,1]=>2
[3,4,1,1,4]=>2
[3,4,1,4,1]=>2
[3,4,4,1,1]=>2
[4,1,1,3,4]=>4
[4,1,1,4,3]=>3
[4,1,3,1,4]=>4
[4,1,3,4,1]=>4
[4,1,4,1,3]=>3
[4,1,4,3,1]=>3
[4,3,1,1,4]=>1
[4,3,1,4,1]=>1
[4,3,4,1,1]=>1
[4,4,1,1,3]=>3
[4,4,1,3,1]=>3
[4,4,3,1,1]=>0
[1,1,3,4,5]=>6
[1,1,3,5,4]=>5
[1,1,4,3,5]=>4
[1,1,4,5,3]=>4
[1,1,5,3,4]=>5
[1,1,5,4,3]=>3
[1,3,1,4,5]=>6
[1,3,1,5,4]=>5
[1,3,4,1,5]=>6
[1,3,4,5,1]=>6
[1,3,5,1,4]=>5
[1,3,5,4,1]=>5
[1,4,1,3,5]=>4
[1,4,1,5,3]=>4
[1,4,3,1,5]=>4
[1,4,3,5,1]=>4
[1,4,5,1,3]=>4
[1,4,5,3,1]=>4
[1,5,1,3,4]=>5
[1,5,1,4,3]=>3
[1,5,3,1,4]=>5
[1,5,3,4,1]=>5
[1,5,4,1,3]=>3
[1,5,4,3,1]=>3
[3,1,1,4,5]=>3
[3,1,1,5,4]=>2
[3,1,4,1,5]=>3
[3,1,4,5,1]=>3
[3,1,5,1,4]=>2
[3,1,5,4,1]=>2
[3,4,1,1,5]=>3
[3,4,1,5,1]=>3
[3,4,5,1,1]=>3
[3,5,1,1,4]=>2
[3,5,1,4,1]=>2
[3,5,4,1,1]=>2
[4,1,1,3,5]=>4
[4,1,1,5,3]=>4
[4,1,3,1,5]=>4
[4,1,3,5,1]=>4
[4,1,5,1,3]=>4
[4,1,5,3,1]=>4
[4,3,1,1,5]=>1
[4,3,1,5,1]=>1
[4,3,5,1,1]=>1
[4,5,1,1,3]=>4
[4,5,1,3,1]=>4
[4,5,3,1,1]=>1
[5,1,1,3,4]=>5
[5,1,1,4,3]=>3
[5,1,3,1,4]=>5
[5,1,3,4,1]=>5
[5,1,4,1,3]=>3
[5,1,4,3,1]=>3
[5,3,1,1,4]=>2
[5,3,1,4,1]=>2
[5,3,4,1,1]=>2
[5,4,1,1,3]=>3
[5,4,1,3,1]=>3
[5,4,3,1,1]=>0
[1,2,2,2,2]=>4
[2,1,2,2,2]=>3
[2,2,1,2,2]=>2
[2,2,2,1,2]=>1
[2,2,2,2,1]=>0
[1,2,2,2,3]=>5
[1,2,2,3,2]=>4
[1,2,3,2,2]=>4
[1,3,2,2,2]=>4
[2,1,2,2,3]=>3
[2,1,2,3,2]=>3
[2,1,3,2,2]=>3
[2,2,1,2,3]=>2
[2,2,1,3,2]=>2
[2,2,2,1,3]=>1
[2,2,2,3,1]=>1
[2,2,3,1,2]=>2
[2,2,3,2,1]=>0
[2,3,1,2,2]=>3
[2,3,2,1,2]=>1
[2,3,2,2,1]=>0
[3,1,2,2,2]=>4
[3,2,1,2,2]=>2
[3,2,2,1,2]=>1
[3,2,2,2,1]=>0
[1,2,2,2,4]=>5
[1,2,2,4,2]=>5
[1,2,4,2,2]=>4
[1,4,2,2,2]=>4
[2,1,2,2,4]=>4
[2,1,2,4,2]=>3
[2,1,4,2,2]=>3
[2,2,1,2,4]=>2
[2,2,1,4,2]=>2
[2,2,2,1,4]=>1
[2,2,2,4,1]=>1
[2,2,4,1,2]=>2
[2,2,4,2,1]=>1
[2,4,1,2,2]=>3
[2,4,2,1,2]=>2
[2,4,2,2,1]=>0
[4,1,2,2,2]=>4
[4,2,1,2,2]=>3
[4,2,2,1,2]=>1
[4,2,2,2,1]=>0
[1,2,2,2,5]=>5
[1,2,2,5,2]=>5
[1,2,5,2,2]=>5
[1,5,2,2,2]=>4
[2,1,2,2,5]=>4
[2,1,2,5,2]=>4
[2,1,5,2,2]=>3
[2,2,1,2,5]=>3
[2,2,1,5,2]=>2
[2,2,2,1,5]=>1
[2,2,2,5,1]=>1
[2,2,5,1,2]=>2
[2,2,5,2,1]=>1
[2,5,1,2,2]=>3
[2,5,2,1,2]=>2
[2,5,2,2,1]=>1
[5,1,2,2,2]=>4
[5,2,1,2,2]=>3
[5,2,2,1,2]=>2
[5,2,2,2,1]=>0
[1,2,2,3,3]=>6
[1,2,3,2,3]=>5
[1,2,3,3,2]=>4
[1,3,2,2,3]=>5
[1,3,2,3,2]=>4
[1,3,3,2,2]=>4
[2,1,2,3,3]=>3
[2,1,3,2,3]=>3
[2,1,3,3,2]=>3
[2,2,1,3,3]=>2
[2,2,3,1,3]=>2
[2,2,3,3,1]=>2
[2,3,1,2,3]=>3
[2,3,1,3,2]=>3
[2,3,2,1,3]=>1
[2,3,2,3,1]=>1
[2,3,3,1,2]=>3
[2,3,3,2,1]=>0
[3,1,2,2,3]=>5
[3,1,2,3,2]=>4
[3,1,3,2,2]=>4
[3,2,1,2,3]=>2
[3,2,1,3,2]=>2
[3,2,2,1,3]=>1
[3,2,2,3,1]=>1
[3,2,3,1,2]=>2
[3,2,3,2,1]=>0
[3,3,1,2,2]=>4
[3,3,2,1,2]=>1
[3,3,2,2,1]=>0
[1,2,2,3,4]=>6
[1,2,2,4,3]=>6
[1,2,3,2,4]=>5
[1,2,3,4,2]=>5
[1,2,4,2,3]=>6
[1,2,4,3,2]=>4
[1,3,2,2,4]=>5
[1,3,2,4,2]=>5
[1,3,4,2,2]=>4
[1,4,2,2,3]=>5
[1,4,2,3,2]=>4
[1,4,3,2,2]=>4
[2,1,2,3,4]=>4
[2,1,2,4,3]=>3
[2,1,3,2,4]=>4
[2,1,3,4,2]=>3
[2,1,4,2,3]=>3
[2,1,4,3,2]=>3
[2,2,1,3,4]=>2
[2,2,1,4,3]=>2
[2,2,3,1,4]=>2
[2,2,3,4,1]=>2
[2,2,4,1,3]=>2
[2,2,4,3,1]=>2
[2,3,1,2,4]=>4
[2,3,1,4,2]=>3
[2,3,2,1,4]=>1
[2,3,2,4,1]=>1
[2,3,4,1,2]=>3
[2,3,4,2,1]=>1
[2,4,1,2,3]=>3
[2,4,1,3,2]=>3
[2,4,2,1,3]=>2
[2,4,2,3,1]=>2
[2,4,3,1,2]=>3
[2,4,3,2,1]=>0
[3,1,2,2,4]=>5
[3,1,2,4,2]=>5
[3,1,4,2,2]=>4
[3,2,1,2,4]=>2
[3,2,1,4,2]=>2
[3,2,2,1,4]=>1
[3,2,2,4,1]=>1
[3,2,4,1,2]=>2
[3,2,4,2,1]=>1
[3,4,1,2,2]=>4
[3,4,2,1,2]=>2
[3,4,2,2,1]=>0
[4,1,2,2,3]=>5
[4,1,2,3,2]=>4
[4,1,3,2,2]=>4
[4,2,1,2,3]=>3
[4,2,1,3,2]=>3
[4,2,2,1,3]=>1
[4,2,2,3,1]=>1
[4,2,3,1,2]=>3
[4,2,3,2,1]=>0
[4,3,1,2,2]=>4
[4,3,2,1,2]=>1
[4,3,2,2,1]=>0
[1,2,2,3,5]=>7
[1,2,2,5,3]=>6
[1,2,3,2,5]=>5
[1,2,3,5,2]=>5
[1,2,5,2,3]=>6
[1,2,5,3,2]=>5
[1,3,2,2,5]=>5
[1,3,2,5,2]=>5
[1,3,5,2,2]=>5
[1,5,2,2,3]=>6
[1,5,2,3,2]=>4
[1,5,3,2,2]=>4
[2,1,2,3,5]=>4
[2,1,2,5,3]=>4
[2,1,3,2,5]=>4
[2,1,3,5,2]=>4
[2,1,5,2,3]=>3
[2,1,5,3,2]=>3
[2,2,1,3,5]=>3
[2,2,1,5,3]=>2
[2,2,3,1,5]=>3
[2,2,3,5,1]=>3
[2,2,5,1,3]=>2
[2,2,5,3,1]=>2
[2,3,1,2,5]=>4
[2,3,1,5,2]=>4
[2,3,2,1,5]=>1
[2,3,2,5,1]=>1
[2,3,5,1,2]=>4
[2,3,5,2,1]=>1
[2,5,1,2,3]=>3
[2,5,1,3,2]=>3
[2,5,2,1,3]=>2
[2,5,2,3,1]=>2
[2,5,3,1,2]=>3
[2,5,3,2,1]=>1
[3,1,2,2,5]=>5
[3,1,2,5,2]=>5
[3,1,5,2,2]=>5
[3,2,1,2,5]=>3
[3,2,1,5,2]=>2
[3,2,2,1,5]=>1
[3,2,2,5,1]=>1
[3,2,5,1,2]=>2
[3,2,5,2,1]=>1
[3,5,1,2,2]=>5
[3,5,2,1,2]=>2
[3,5,2,2,1]=>1
[5,1,2,2,3]=>6
[5,1,2,3,2]=>4
[5,1,3,2,2]=>4
[5,2,1,2,3]=>3
[5,2,1,3,2]=>3
[5,2,2,1,3]=>2
[5,2,2,3,1]=>2
[5,2,3,1,2]=>3
[5,2,3,2,1]=>0
[5,3,1,2,2]=>4
[5,3,2,1,2]=>2
[5,3,2,2,1]=>0
[1,2,2,4,4]=>6
[1,2,4,2,4]=>6
[1,2,4,4,2]=>6
[1,4,2,2,4]=>5
[1,4,2,4,2]=>5
[1,4,4,2,2]=>4
[2,1,2,4,4]=>5
[2,1,4,2,4]=>4
[2,1,4,4,2]=>3
[2,2,1,4,4]=>2
[2,2,4,1,4]=>2
[2,2,4,4,1]=>2
[2,4,1,2,4]=>4
[2,4,1,4,2]=>3
[2,4,2,1,4]=>2
[2,4,2,4,1]=>2
[2,4,4,1,2]=>3
[2,4,4,2,1]=>2
[4,1,2,2,4]=>5
[4,1,2,4,2]=>5
[4,1,4,2,2]=>4
[4,2,1,2,4]=>4
[4,2,1,4,2]=>3
[4,2,2,1,4]=>1
[4,2,2,4,1]=>1
[4,2,4,1,2]=>3
[4,2,4,2,1]=>1
[4,4,1,2,2]=>4
[4,4,2,1,2]=>3
[4,4,2,2,1]=>0
[1,2,2,4,5]=>7
[1,2,2,5,4]=>6
[1,2,4,2,5]=>7
[1,2,4,5,2]=>7
[1,2,5,2,4]=>6
[1,2,5,4,2]=>6
[1,4,2,2,5]=>5
[1,4,2,5,2]=>5
[1,4,5,2,2]=>5
[1,5,2,2,4]=>6
[1,5,2,4,2]=>6
[1,5,4,2,2]=>4
[2,1,2,4,5]=>6
[2,1,2,5,4]=>5
[2,1,4,2,5]=>4
[2,1,4,5,2]=>4
[2,1,5,2,4]=>5
[2,1,5,4,2]=>3
[2,2,1,4,5]=>3
[2,2,1,5,4]=>2
[2,2,4,1,5]=>3
[2,2,4,5,1]=>3
[2,2,5,1,4]=>2
[2,2,5,4,1]=>2
[2,4,1,2,5]=>4
[2,4,1,5,2]=>4
[2,4,2,1,5]=>3
[2,4,2,5,1]=>3
[2,4,5,1,2]=>4
[2,4,5,2,1]=>3
[2,5,1,2,4]=>5
[2,5,1,4,2]=>3
[2,5,2,1,4]=>2
[2,5,2,4,1]=>2
[2,5,4,1,2]=>3
[2,5,4,2,1]=>2
[4,1,2,2,5]=>5
[4,1,2,5,2]=>5
[4,1,5,2,2]=>5
[4,2,1,2,5]=>4
[4,2,1,5,2]=>4
[4,2,2,1,5]=>1
[4,2,2,5,1]=>1
[4,2,5,1,2]=>4
[4,2,5,2,1]=>1
[4,5,1,2,2]=>5
[4,5,2,1,2]=>4
[4,5,2,2,1]=>1
[5,1,2,2,4]=>6
[5,1,2,4,2]=>6
[5,1,4,2,2]=>4
[5,2,1,2,4]=>5
[5,2,1,4,2]=>3
[5,2,2,1,4]=>2
[5,2,2,4,1]=>2
[5,2,4,1,2]=>3
[5,2,4,2,1]=>2
[5,4,1,2,2]=>4
[5,4,2,1,2]=>3
[5,4,2,2,1]=>0
[1,2,3,3,3]=>7
[1,3,2,3,3]=>6
[1,3,3,2,3]=>5
[1,3,3,3,2]=>4
[2,1,3,3,3]=>3
[2,3,1,3,3]=>3
[2,3,3,1,3]=>3
[2,3,3,3,1]=>3
[3,1,2,3,3]=>6
[3,1,3,2,3]=>5
[3,1,3,3,2]=>4
[3,2,1,3,3]=>2
[3,2,3,1,3]=>2
[3,2,3,3,1]=>2
[3,3,1,2,3]=>5
[3,3,1,3,2]=>4
[3,3,2,1,3]=>1
[3,3,2,3,1]=>1
[3,3,3,1,2]=>4
[3,3,3,2,1]=>0
[1,2,3,3,4]=>8
[1,2,3,4,3]=>7
[1,2,4,3,3]=>7
[1,3,2,3,4]=>6
[1,3,2,4,3]=>6
[1,3,3,2,4]=>5
[1,3,3,4,2]=>5
[1,3,4,2,3]=>6
[1,3,4,3,2]=>4
[1,4,2,3,3]=>7
[1,4,3,2,3]=>5
[1,4,3,3,2]=>4
[2,1,3,3,4]=>4
[2,1,3,4,3]=>3
[2,1,4,3,3]=>3
[2,3,1,3,4]=>4
[2,3,1,4,3]=>3
[2,3,3,1,4]=>4
[2,3,3,4,1]=>4
[2,3,4,1,3]=>3
[2,3,4,3,1]=>3
[2,4,1,3,3]=>3
[2,4,3,1,3]=>3
[2,4,3,3,1]=>3
[3,1,2,3,4]=>6
[3,1,2,4,3]=>6
[3,1,3,2,4]=>5
[3,1,3,4,2]=>5
[3,1,4,2,3]=>6
[3,1,4,3,2]=>4
[3,2,1,3,4]=>2
[3,2,1,4,3]=>2
[3,2,3,1,4]=>2
[3,2,3,4,1]=>2
[3,2,4,1,3]=>2
[3,2,4,3,1]=>2
[3,3,1,2,4]=>5
[3,3,1,4,2]=>5
[3,3,2,1,4]=>1
[3,3,2,4,1]=>1
[3,3,4,1,2]=>5
[3,3,4,2,1]=>1
[3,4,1,2,3]=>6
[3,4,1,3,2]=>4
[3,4,2,1,3]=>2
[3,4,2,3,1]=>2
[3,4,3,1,2]=>4
[3,4,3,2,1]=>0
[4,1,2,3,3]=>7
[4,1,3,2,3]=>5
[4,1,3,3,2]=>4
[4,2,1,3,3]=>3
[4,2,3,1,3]=>3
[4,2,3,3,1]=>3
[4,3,1,2,3]=>5
[4,3,1,3,2]=>4
[4,3,2,1,3]=>1
[4,3,2,3,1]=>1
[4,3,3,1,2]=>4
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The pmaj statistic of a parking function.
This is the parking function analogue of the bounce statistic, see [1, Section 1.3].
The definition given there is equivalent to the following: One again and again scans the parking function from right to left, keeping track of how often one has started over again. At step $i$, one marks the next position whose value is at most $i$ with the number of restarts from the end of the parking function. The pmaj statistic is then the sum of the markings.
For example, consider the parking function $[6,2,4,1,4,1,7,3]$.
In the first round, we mark positions $6,4,2$ with $0$'s.
In the second round, we mark positions $8,5,3,1$ with $1$'s.
In the third round, we mark position $7$ with a $2$.
In total, we obtain that
$$\operatorname{pmaj}([6,2,4,1,4,1,7,3]) = 6.$$
This statistic is equidistributed with the area statistic St000188The area of the Dyck path corresponding to a parking function and the total displacement of a parking function. and the dinv statistic St000136The dinv of a parking function..
This is the parking function analogue of the bounce statistic, see [1, Section 1.3].
The definition given there is equivalent to the following: One again and again scans the parking function from right to left, keeping track of how often one has started over again. At step $i$, one marks the next position whose value is at most $i$ with the number of restarts from the end of the parking function. The pmaj statistic is then the sum of the markings.
For example, consider the parking function $[6,2,4,1,4,1,7,3]$.
In the first round, we mark positions $6,4,2$ with $0$'s.
In the second round, we mark positions $8,5,3,1$ with $1$'s.
In the third round, we mark position $7$ with a $2$.
In total, we obtain that
$$\operatorname{pmaj}([6,2,4,1,4,1,7,3]) = 6.$$
This statistic is equidistributed with the area statistic St000188The area of the Dyck path corresponding to a parking function and the total displacement of a parking function. and the dinv statistic St000136The dinv of a parking function..
References
[1] Loehr, N. A. Combinatorics of $q$, $t$-parking functions MathSciNet:2110560
Code
def statistic(PF): PF = list(PF) PF.reverse() n = len(PF) count = 1 run = 0 pm = 0 while any( not x is Infinity for x in PF ): for i in range(n): if PF[i] <= count: count += 1 PF[i] = Infinity pm += run run += 1 return pm
Created
Jun 14, 2018 at 11:31 by Christian Stump
Updated
Jun 14, 2018 at 11:31 by Christian Stump
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!