Identifier
- St001210: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[1,0]=>1
[1,0,1,0]=>1
[1,1,0,0]=>2
[1,0,1,0,1,0]=>1
[1,0,1,1,0,0]=>1
[1,1,0,0,1,0]=>2
[1,1,0,1,0,0]=>2
[1,1,1,0,0,0]=>3
[1,0,1,0,1,0,1,0]=>1
[1,0,1,0,1,1,0,0]=>1
[1,0,1,1,0,0,1,0]=>1
[1,0,1,1,0,1,0,0]=>1
[1,0,1,1,1,0,0,0]=>2
[1,1,0,0,1,0,1,0]=>2
[1,1,0,0,1,1,0,0]=>2
[1,1,0,1,0,0,1,0]=>2
[1,1,0,1,0,1,0,0]=>2
[1,1,0,1,1,0,0,0]=>2
[1,1,1,0,0,0,1,0]=>3
[1,1,1,0,0,1,0,0]=>3
[1,1,1,0,1,0,0,0]=>3
[1,1,1,1,0,0,0,0]=>4
[1,0,1,0,1,0,1,0,1,0]=>1
[1,0,1,0,1,0,1,1,0,0]=>1
[1,0,1,0,1,1,0,0,1,0]=>1
[1,0,1,0,1,1,0,1,0,0]=>1
[1,0,1,0,1,1,1,0,0,0]=>2
[1,0,1,1,0,0,1,0,1,0]=>1
[1,0,1,1,0,0,1,1,0,0]=>1
[1,0,1,1,0,1,0,0,1,0]=>1
[1,0,1,1,0,1,0,1,0,0]=>1
[1,0,1,1,0,1,1,0,0,0]=>1
[1,0,1,1,1,0,0,0,1,0]=>2
[1,0,1,1,1,0,0,1,0,0]=>2
[1,0,1,1,1,0,1,0,0,0]=>2
[1,0,1,1,1,1,0,0,0,0]=>3
[1,1,0,0,1,0,1,0,1,0]=>2
[1,1,0,0,1,0,1,1,0,0]=>2
[1,1,0,0,1,1,0,0,1,0]=>2
[1,1,0,0,1,1,0,1,0,0]=>2
[1,1,0,0,1,1,1,0,0,0]=>2
[1,1,0,1,0,0,1,0,1,0]=>2
[1,1,0,1,0,0,1,1,0,0]=>2
[1,1,0,1,0,1,0,0,1,0]=>2
[1,1,0,1,0,1,0,1,0,0]=>2
[1,1,0,1,0,1,1,0,0,0]=>2
[1,1,0,1,1,0,0,0,1,0]=>2
[1,1,0,1,1,0,0,1,0,0]=>2
[1,1,0,1,1,0,1,0,0,0]=>2
[1,1,0,1,1,1,0,0,0,0]=>2
[1,1,1,0,0,0,1,0,1,0]=>3
[1,1,1,0,0,0,1,1,0,0]=>3
[1,1,1,0,0,1,0,0,1,0]=>3
[1,1,1,0,0,1,0,1,0,0]=>3
[1,1,1,0,0,1,1,0,0,0]=>3
[1,1,1,0,1,0,0,0,1,0]=>3
[1,1,1,0,1,0,0,1,0,0]=>3
[1,1,1,0,1,0,1,0,0,0]=>3
[1,1,1,0,1,1,0,0,0,0]=>3
[1,1,1,1,0,0,0,0,1,0]=>4
[1,1,1,1,0,0,0,1,0,0]=>4
[1,1,1,1,0,0,1,0,0,0]=>4
[1,1,1,1,0,1,0,0,0,0]=>4
[1,1,1,1,1,0,0,0,0,0]=>5
[1,0,1,0,1,0,1,0,1,0,1,0]=>1
[1,0,1,0,1,0,1,0,1,1,0,0]=>1
[1,0,1,0,1,0,1,1,0,0,1,0]=>1
[1,0,1,0,1,0,1,1,0,1,0,0]=>1
[1,0,1,0,1,0,1,1,1,0,0,0]=>2
[1,0,1,0,1,1,0,0,1,0,1,0]=>1
[1,0,1,0,1,1,0,0,1,1,0,0]=>1
[1,0,1,0,1,1,0,1,0,0,1,0]=>1
[1,0,1,0,1,1,0,1,0,1,0,0]=>1
[1,0,1,0,1,1,0,1,1,0,0,0]=>1
[1,0,1,0,1,1,1,0,0,0,1,0]=>2
[1,0,1,0,1,1,1,0,0,1,0,0]=>2
[1,0,1,0,1,1,1,0,1,0,0,0]=>2
[1,0,1,0,1,1,1,1,0,0,0,0]=>3
[1,0,1,1,0,0,1,0,1,0,1,0]=>1
[1,0,1,1,0,0,1,0,1,1,0,0]=>1
[1,0,1,1,0,0,1,1,0,0,1,0]=>1
[1,0,1,1,0,0,1,1,0,1,0,0]=>1
[1,0,1,1,0,0,1,1,1,0,0,0]=>2
[1,0,1,1,0,1,0,0,1,0,1,0]=>1
[1,0,1,1,0,1,0,0,1,1,0,0]=>1
[1,0,1,1,0,1,0,1,0,0,1,0]=>1
[1,0,1,1,0,1,0,1,0,1,0,0]=>1
[1,0,1,1,0,1,0,1,1,0,0,0]=>1
[1,0,1,1,0,1,1,0,0,0,1,0]=>1
[1,0,1,1,0,1,1,0,0,1,0,0]=>1
[1,0,1,1,0,1,1,0,1,0,0,0]=>1
[1,0,1,1,0,1,1,1,0,0,0,0]=>2
[1,0,1,1,1,0,0,0,1,0,1,0]=>2
[1,0,1,1,1,0,0,0,1,1,0,0]=>2
[1,0,1,1,1,0,0,1,0,0,1,0]=>2
[1,0,1,1,1,0,0,1,0,1,0,0]=>2
[1,0,1,1,1,0,0,1,1,0,0,0]=>2
[1,0,1,1,1,0,1,0,0,0,1,0]=>2
[1,0,1,1,1,0,1,0,0,1,0,0]=>2
[1,0,1,1,1,0,1,0,1,0,0,0]=>2
[1,0,1,1,1,0,1,1,0,0,0,0]=>2
[1,0,1,1,1,1,0,0,0,0,1,0]=>3
[1,0,1,1,1,1,0,0,0,1,0,0]=>3
[1,0,1,1,1,1,0,0,1,0,0,0]=>3
[1,0,1,1,1,1,0,1,0,0,0,0]=>3
[1,0,1,1,1,1,1,0,0,0,0,0]=>4
[1,1,0,0,1,0,1,0,1,0,1,0]=>2
[1,1,0,0,1,0,1,0,1,1,0,0]=>2
[1,1,0,0,1,0,1,1,0,0,1,0]=>2
[1,1,0,0,1,0,1,1,0,1,0,0]=>2
[1,1,0,0,1,0,1,1,1,0,0,0]=>2
[1,1,0,0,1,1,0,0,1,0,1,0]=>2
[1,1,0,0,1,1,0,0,1,1,0,0]=>2
[1,1,0,0,1,1,0,1,0,0,1,0]=>2
[1,1,0,0,1,1,0,1,0,1,0,0]=>2
[1,1,0,0,1,1,0,1,1,0,0,0]=>2
[1,1,0,0,1,1,1,0,0,0,1,0]=>2
[1,1,0,0,1,1,1,0,0,1,0,0]=>2
[1,1,0,0,1,1,1,0,1,0,0,0]=>2
[1,1,0,0,1,1,1,1,0,0,0,0]=>3
[1,1,0,1,0,0,1,0,1,0,1,0]=>2
[1,1,0,1,0,0,1,0,1,1,0,0]=>2
[1,1,0,1,0,0,1,1,0,0,1,0]=>2
[1,1,0,1,0,0,1,1,0,1,0,0]=>2
[1,1,0,1,0,0,1,1,1,0,0,0]=>2
[1,1,0,1,0,1,0,0,1,0,1,0]=>2
[1,1,0,1,0,1,0,0,1,1,0,0]=>2
[1,1,0,1,0,1,0,1,0,0,1,0]=>2
[1,1,0,1,0,1,0,1,0,1,0,0]=>2
[1,1,0,1,0,1,0,1,1,0,0,0]=>2
[1,1,0,1,0,1,1,0,0,0,1,0]=>2
[1,1,0,1,0,1,1,0,0,1,0,0]=>2
[1,1,0,1,0,1,1,0,1,0,0,0]=>2
[1,1,0,1,0,1,1,1,0,0,0,0]=>2
[1,1,0,1,1,0,0,0,1,0,1,0]=>2
[1,1,0,1,1,0,0,0,1,1,0,0]=>2
[1,1,0,1,1,0,0,1,0,0,1,0]=>2
[1,1,0,1,1,0,0,1,0,1,0,0]=>2
[1,1,0,1,1,0,0,1,1,0,0,0]=>2
[1,1,0,1,1,0,1,0,0,0,1,0]=>2
[1,1,0,1,1,0,1,0,0,1,0,0]=>2
[1,1,0,1,1,0,1,0,1,0,0,0]=>2
[1,1,0,1,1,0,1,1,0,0,0,0]=>2
[1,1,0,1,1,1,0,0,0,0,1,0]=>2
[1,1,0,1,1,1,0,0,0,1,0,0]=>2
[1,1,0,1,1,1,0,0,1,0,0,0]=>2
[1,1,0,1,1,1,0,1,0,0,0,0]=>2
[1,1,0,1,1,1,1,0,0,0,0,0]=>3
[1,1,1,0,0,0,1,0,1,0,1,0]=>3
[1,1,1,0,0,0,1,0,1,1,0,0]=>3
[1,1,1,0,0,0,1,1,0,0,1,0]=>3
[1,1,1,0,0,0,1,1,0,1,0,0]=>3
[1,1,1,0,0,0,1,1,1,0,0,0]=>3
[1,1,1,0,0,1,0,0,1,0,1,0]=>3
[1,1,1,0,0,1,0,0,1,1,0,0]=>3
[1,1,1,0,0,1,0,1,0,0,1,0]=>3
[1,1,1,0,0,1,0,1,0,1,0,0]=>3
[1,1,1,0,0,1,0,1,1,0,0,0]=>3
[1,1,1,0,0,1,1,0,0,0,1,0]=>3
[1,1,1,0,0,1,1,0,0,1,0,0]=>3
[1,1,1,0,0,1,1,0,1,0,0,0]=>3
[1,1,1,0,0,1,1,1,0,0,0,0]=>3
[1,1,1,0,1,0,0,0,1,0,1,0]=>3
[1,1,1,0,1,0,0,0,1,1,0,0]=>3
[1,1,1,0,1,0,0,1,0,0,1,0]=>3
[1,1,1,0,1,0,0,1,0,1,0,0]=>3
[1,1,1,0,1,0,0,1,1,0,0,0]=>3
[1,1,1,0,1,0,1,0,0,0,1,0]=>3
[1,1,1,0,1,0,1,0,0,1,0,0]=>3
[1,1,1,0,1,0,1,0,1,0,0,0]=>3
[1,1,1,0,1,0,1,1,0,0,0,0]=>3
[1,1,1,0,1,1,0,0,0,0,1,0]=>3
[1,1,1,0,1,1,0,0,0,1,0,0]=>3
[1,1,1,0,1,1,0,0,1,0,0,0]=>3
[1,1,1,0,1,1,0,1,0,0,0,0]=>3
[1,1,1,0,1,1,1,0,0,0,0,0]=>3
[1,1,1,1,0,0,0,0,1,0,1,0]=>4
[1,1,1,1,0,0,0,0,1,1,0,0]=>4
[1,1,1,1,0,0,0,1,0,0,1,0]=>4
[1,1,1,1,0,0,0,1,0,1,0,0]=>4
[1,1,1,1,0,0,0,1,1,0,0,0]=>4
[1,1,1,1,0,0,1,0,0,0,1,0]=>4
[1,1,1,1,0,0,1,0,0,1,0,0]=>4
[1,1,1,1,0,0,1,0,1,0,0,0]=>4
[1,1,1,1,0,0,1,1,0,0,0,0]=>4
[1,1,1,1,0,1,0,0,0,0,1,0]=>4
[1,1,1,1,0,1,0,0,0,1,0,0]=>4
[1,1,1,1,0,1,0,0,1,0,0,0]=>4
[1,1,1,1,0,1,0,1,0,0,0,0]=>4
[1,1,1,1,0,1,1,0,0,0,0,0]=>4
[1,1,1,1,1,0,0,0,0,0,1,0]=>5
[1,1,1,1,1,0,0,0,0,1,0,0]=>5
[1,1,1,1,1,0,0,0,1,0,0,0]=>5
[1,1,1,1,1,0,0,1,0,0,0,0]=>5
[1,1,1,1,1,0,1,0,0,0,0,0]=>5
[1,1,1,1,1,1,0,0,0,0,0,0]=>6
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path.
Code
DeclareOperation("ext1largest",[IsList]); InstallMethod(ext1largest, "for a representation of a quiver", [IsList],0,function(LIST) local A,L,temp2,RegA; A:=LIST[1]; L:=ARQuiver([A,1000])[2]; RegA:=DirectSumOfQPAModules(IndecProjectiveModules(A)); temp2:=[];for x in L do Append(temp2,[Size(ExtOverAlgebra(x,RegA)[2])]);od; return(Maximum(temp2)); end);
Created
Jun 19, 2018 at 18:20 by Rene Marczinzik
Updated
Jun 19, 2018 at 18:39 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!