Identifier
- St001216: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[1,0]=>0
[1,0,1,0]=>1
[1,1,0,0]=>0
[1,0,1,0,1,0]=>0
[1,0,1,1,0,0]=>1
[1,1,0,0,1,0]=>1
[1,1,0,1,0,0]=>2
[1,1,1,0,0,0]=>0
[1,0,1,0,1,0,1,0]=>0
[1,0,1,0,1,1,0,0]=>0
[1,0,1,1,0,0,1,0]=>2
[1,0,1,1,0,1,0,0]=>1
[1,0,1,1,1,0,0,0]=>1
[1,1,0,0,1,0,1,0]=>0
[1,1,0,0,1,1,0,0]=>1
[1,1,0,1,0,0,1,0]=>1
[1,1,0,1,0,1,0,0]=>1
[1,1,0,1,1,0,0,0]=>2
[1,1,1,0,0,0,1,0]=>1
[1,1,1,0,0,1,0,0]=>2
[1,1,1,0,1,0,0,0]=>3
[1,1,1,1,0,0,0,0]=>0
[1,0,1,0,1,0,1,0,1,0]=>0
[1,0,1,0,1,0,1,1,0,0]=>0
[1,0,1,0,1,1,0,0,1,0]=>1
[1,0,1,0,1,1,0,1,0,0]=>1
[1,0,1,0,1,1,1,0,0,0]=>0
[1,0,1,1,0,0,1,0,1,0]=>1
[1,0,1,1,0,0,1,1,0,0]=>2
[1,0,1,1,0,1,0,0,1,0]=>0
[1,0,1,1,0,1,0,1,0,0]=>1
[1,0,1,1,0,1,1,0,0,0]=>1
[1,0,1,1,1,0,0,0,1,0]=>2
[1,0,1,1,1,0,0,1,0,0]=>3
[1,0,1,1,1,0,1,0,0,0]=>2
[1,0,1,1,1,1,0,0,0,0]=>1
[1,1,0,0,1,0,1,0,1,0]=>0
[1,1,0,0,1,0,1,1,0,0]=>0
[1,1,0,0,1,1,0,0,1,0]=>2
[1,1,0,0,1,1,0,1,0,0]=>1
[1,1,0,0,1,1,1,0,0,0]=>1
[1,1,0,1,0,0,1,0,1,0]=>1
[1,1,0,1,0,0,1,1,0,0]=>1
[1,1,0,1,0,1,0,0,1,0]=>1
[1,1,0,1,0,1,0,1,0,0]=>0
[1,1,0,1,0,1,1,0,0,0]=>1
[1,1,0,1,1,0,0,0,1,0]=>3
[1,1,0,1,1,0,0,1,0,0]=>2
[1,1,0,1,1,0,1,0,0,0]=>2
[1,1,0,1,1,1,0,0,0,0]=>2
[1,1,1,0,0,0,1,0,1,0]=>0
[1,1,1,0,0,0,1,1,0,0]=>1
[1,1,1,0,0,1,0,0,1,0]=>1
[1,1,1,0,0,1,0,1,0,0]=>1
[1,1,1,0,0,1,1,0,0,0]=>2
[1,1,1,0,1,0,0,0,1,0]=>2
[1,1,1,0,1,0,0,1,0,0]=>2
[1,1,1,0,1,0,1,0,0,0]=>2
[1,1,1,0,1,1,0,0,0,0]=>3
[1,1,1,1,0,0,0,0,1,0]=>1
[1,1,1,1,0,0,0,1,0,0]=>2
[1,1,1,1,0,0,1,0,0,0]=>3
[1,1,1,1,0,1,0,0,0,0]=>4
[1,1,1,1,1,0,0,0,0,0]=>0
[1,0,1,0,1,0,1,0,1,0,1,0]=>0
[1,0,1,0,1,0,1,0,1,1,0,0]=>0
[1,0,1,0,1,0,1,1,0,0,1,0]=>1
[1,0,1,0,1,0,1,1,0,1,0,0]=>1
[1,0,1,0,1,0,1,1,1,0,0,0]=>0
[1,0,1,0,1,1,0,0,1,0,1,0]=>0
[1,0,1,0,1,1,0,0,1,1,0,0]=>1
[1,0,1,0,1,1,0,1,0,0,1,0]=>0
[1,0,1,0,1,1,0,1,0,1,0,0]=>1
[1,0,1,0,1,1,0,1,1,0,0,0]=>1
[1,0,1,0,1,1,1,0,0,0,1,0]=>1
[1,0,1,0,1,1,1,0,0,1,0,0]=>2
[1,0,1,0,1,1,1,0,1,0,0,0]=>2
[1,0,1,0,1,1,1,1,0,0,0,0]=>0
[1,0,1,1,0,0,1,0,1,0,1,0]=>1
[1,0,1,1,0,0,1,0,1,1,0,0]=>1
[1,0,1,1,0,0,1,1,0,0,1,0]=>3
[1,0,1,1,0,0,1,1,0,1,0,0]=>2
[1,0,1,1,0,0,1,1,1,0,0,0]=>2
[1,0,1,1,0,1,0,0,1,0,1,0]=>0
[1,0,1,1,0,1,0,0,1,1,0,0]=>0
[1,0,1,1,0,1,0,1,0,0,1,0]=>1
[1,0,1,1,0,1,0,1,0,1,0,0]=>0
[1,0,1,1,0,1,0,1,1,0,0,0]=>1
[1,0,1,1,0,1,1,0,0,0,1,0]=>2
[1,0,1,1,0,1,1,0,0,1,0,0]=>1
[1,0,1,1,0,1,1,0,1,0,0,0]=>2
[1,0,1,1,0,1,1,1,0,0,0,0]=>1
[1,0,1,1,1,0,0,0,1,0,1,0]=>1
[1,0,1,1,1,0,0,0,1,1,0,0]=>2
[1,0,1,1,1,0,0,1,0,0,1,0]=>2
[1,0,1,1,1,0,0,1,0,1,0,0]=>2
[1,0,1,1,1,0,0,1,1,0,0,0]=>3
[1,0,1,1,1,0,1,0,0,0,1,0]=>1
[1,0,1,1,1,0,1,0,0,1,0,0]=>1
[1,0,1,1,1,0,1,0,1,0,0,0]=>2
[1,0,1,1,1,0,1,1,0,0,0,0]=>2
[1,0,1,1,1,1,0,0,0,0,1,0]=>2
[1,0,1,1,1,1,0,0,0,1,0,0]=>3
[1,0,1,1,1,1,0,0,1,0,0,0]=>4
[1,0,1,1,1,1,0,1,0,0,0,0]=>3
[1,0,1,1,1,1,1,0,0,0,0,0]=>1
[1,1,0,0,1,0,1,0,1,0,1,0]=>0
[1,1,0,0,1,0,1,0,1,1,0,0]=>0
[1,1,0,0,1,0,1,1,0,0,1,0]=>1
[1,1,0,0,1,0,1,1,0,1,0,0]=>1
[1,1,0,0,1,0,1,1,1,0,0,0]=>0
[1,1,0,0,1,1,0,0,1,0,1,0]=>1
[1,1,0,0,1,1,0,0,1,1,0,0]=>2
[1,1,0,0,1,1,0,1,0,0,1,0]=>0
[1,1,0,0,1,1,0,1,0,1,0,0]=>1
[1,1,0,0,1,1,0,1,1,0,0,0]=>1
[1,1,0,0,1,1,1,0,0,0,1,0]=>2
[1,1,0,0,1,1,1,0,0,1,0,0]=>3
[1,1,0,0,1,1,1,0,1,0,0,0]=>2
[1,1,0,0,1,1,1,1,0,0,0,0]=>1
[1,1,0,1,0,0,1,0,1,0,1,0]=>1
[1,1,0,1,0,0,1,0,1,1,0,0]=>1
[1,1,0,1,0,0,1,1,0,0,1,0]=>2
[1,1,0,1,0,0,1,1,0,1,0,0]=>2
[1,1,0,1,0,0,1,1,1,0,0,0]=>1
[1,1,0,1,0,1,0,0,1,0,1,0]=>1
[1,1,0,1,0,1,0,0,1,1,0,0]=>1
[1,1,0,1,0,1,0,1,0,0,1,0]=>0
[1,1,0,1,0,1,0,1,0,1,0,0]=>0
[1,1,0,1,0,1,0,1,1,0,0,0]=>0
[1,1,0,1,0,1,1,0,0,0,1,0]=>2
[1,1,0,1,0,1,1,0,0,1,0,0]=>2
[1,1,0,1,0,1,1,0,1,0,0,0]=>1
[1,1,0,1,0,1,1,1,0,0,0,0]=>1
[1,1,0,1,1,0,0,0,1,0,1,0]=>2
[1,1,0,1,1,0,0,0,1,1,0,0]=>3
[1,1,0,1,1,0,0,1,0,0,1,0]=>1
[1,1,0,1,1,0,0,1,0,1,0,0]=>2
[1,1,0,1,1,0,0,1,1,0,0,0]=>2
[1,1,0,1,1,0,1,0,0,0,1,0]=>1
[1,1,0,1,1,0,1,0,0,1,0,0]=>2
[1,1,0,1,1,0,1,0,1,0,0,0]=>1
[1,1,0,1,1,0,1,1,0,0,0,0]=>2
[1,1,0,1,1,1,0,0,0,0,1,0]=>3
[1,1,0,1,1,1,0,0,0,1,0,0]=>4
[1,1,0,1,1,1,0,0,1,0,0,0]=>3
[1,1,0,1,1,1,0,1,0,0,0,0]=>3
[1,1,0,1,1,1,1,0,0,0,0,0]=>2
[1,1,1,0,0,0,1,0,1,0,1,0]=>0
[1,1,1,0,0,0,1,0,1,1,0,0]=>0
[1,1,1,0,0,0,1,1,0,0,1,0]=>2
[1,1,1,0,0,0,1,1,0,1,0,0]=>1
[1,1,1,0,0,0,1,1,1,0,0,0]=>1
[1,1,1,0,0,1,0,0,1,0,1,0]=>1
[1,1,1,0,0,1,0,0,1,1,0,0]=>1
[1,1,1,0,0,1,0,1,0,0,1,0]=>1
[1,1,1,0,0,1,0,1,0,1,0,0]=>0
[1,1,1,0,0,1,0,1,1,0,0,0]=>1
[1,1,1,0,0,1,1,0,0,0,1,0]=>3
[1,1,1,0,0,1,1,0,0,1,0,0]=>2
[1,1,1,0,0,1,1,0,1,0,0,0]=>2
[1,1,1,0,0,1,1,1,0,0,0,0]=>2
[1,1,1,0,1,0,0,0,1,0,1,0]=>2
[1,1,1,0,1,0,0,0,1,1,0,0]=>2
[1,1,1,0,1,0,0,1,0,0,1,0]=>2
[1,1,1,0,1,0,0,1,0,1,0,0]=>1
[1,1,1,0,1,0,0,1,1,0,0,0]=>2
[1,1,1,0,1,0,1,0,0,0,1,0]=>2
[1,1,1,0,1,0,1,0,0,1,0,0]=>1
[1,1,1,0,1,0,1,0,1,0,0,0]=>1
[1,1,1,0,1,0,1,1,0,0,0,0]=>2
[1,1,1,0,1,1,0,0,0,0,1,0]=>4
[1,1,1,0,1,1,0,0,0,1,0,0]=>3
[1,1,1,0,1,1,0,0,1,0,0,0]=>3
[1,1,1,0,1,1,0,1,0,0,0,0]=>3
[1,1,1,0,1,1,1,0,0,0,0,0]=>3
[1,1,1,1,0,0,0,0,1,0,1,0]=>0
[1,1,1,1,0,0,0,0,1,1,0,0]=>1
[1,1,1,1,0,0,0,1,0,0,1,0]=>1
[1,1,1,1,0,0,0,1,0,1,0,0]=>1
[1,1,1,1,0,0,0,1,1,0,0,0]=>2
[1,1,1,1,0,0,1,0,0,0,1,0]=>2
[1,1,1,1,0,0,1,0,0,1,0,0]=>2
[1,1,1,1,0,0,1,0,1,0,0,0]=>2
[1,1,1,1,0,0,1,1,0,0,0,0]=>3
[1,1,1,1,0,1,0,0,0,0,1,0]=>3
[1,1,1,1,0,1,0,0,0,1,0,0]=>3
[1,1,1,1,0,1,0,0,1,0,0,0]=>3
[1,1,1,1,0,1,0,1,0,0,0,0]=>3
[1,1,1,1,0,1,1,0,0,0,0,0]=>4
[1,1,1,1,1,0,0,0,0,0,1,0]=>1
[1,1,1,1,1,0,0,0,0,1,0,0]=>2
[1,1,1,1,1,0,0,0,1,0,0,0]=>3
[1,1,1,1,1,0,0,1,0,0,0,0]=>4
[1,1,1,1,1,0,1,0,0,0,0,0]=>5
[1,1,1,1,1,1,0,0,0,0,0,0]=>0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of indecomposable injective modules in the corresponding Nakayama algebra that have non-vanishing second Ext-group with the regular module.
Code
DeclareOperation("ext2inj",[IsList]); InstallMethod(ext2inj, "for a representation of a quiver", [IsList],0,function(LIST) local A,N,RegA,g,temmi,UT,M,L,U,simA,injA,UU; A:=LIST[1]; injA:=IndecInjectiveModules(A); RegA:=DirectSumOfQPAModules(IndecProjectiveModules(A)); U:=Filtered(injA,x->Size(ExtOverAlgebra(NthSyzygy(x,1),RegA)[2])>0); return(Size(U)); end);
Created
Jun 20, 2018 at 23:50 by Rene Marczinzik
Updated
Jun 20, 2018 at 23:50 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!