edit this statistic or download as text // json
Identifier
Values
=>
Cc0005;cc-rep
[1,0]=>0 [1,0,1,0]=>1 [1,1,0,0]=>0 [1,0,1,0,1,0]=>0 [1,0,1,1,0,0]=>1 [1,1,0,0,1,0]=>1 [1,1,0,1,0,0]=>2 [1,1,1,0,0,0]=>0 [1,0,1,0,1,0,1,0]=>0 [1,0,1,0,1,1,0,0]=>0 [1,0,1,1,0,0,1,0]=>2 [1,0,1,1,0,1,0,0]=>1 [1,0,1,1,1,0,0,0]=>1 [1,1,0,0,1,0,1,0]=>0 [1,1,0,0,1,1,0,0]=>1 [1,1,0,1,0,0,1,0]=>1 [1,1,0,1,0,1,0,0]=>1 [1,1,0,1,1,0,0,0]=>2 [1,1,1,0,0,0,1,0]=>1 [1,1,1,0,0,1,0,0]=>2 [1,1,1,0,1,0,0,0]=>3 [1,1,1,1,0,0,0,0]=>0 [1,0,1,0,1,0,1,0,1,0]=>0 [1,0,1,0,1,0,1,1,0,0]=>0 [1,0,1,0,1,1,0,0,1,0]=>1 [1,0,1,0,1,1,0,1,0,0]=>1 [1,0,1,0,1,1,1,0,0,0]=>0 [1,0,1,1,0,0,1,0,1,0]=>1 [1,0,1,1,0,0,1,1,0,0]=>2 [1,0,1,1,0,1,0,0,1,0]=>0 [1,0,1,1,0,1,0,1,0,0]=>1 [1,0,1,1,0,1,1,0,0,0]=>1 [1,0,1,1,1,0,0,0,1,0]=>2 [1,0,1,1,1,0,0,1,0,0]=>3 [1,0,1,1,1,0,1,0,0,0]=>2 [1,0,1,1,1,1,0,0,0,0]=>1 [1,1,0,0,1,0,1,0,1,0]=>0 [1,1,0,0,1,0,1,1,0,0]=>0 [1,1,0,0,1,1,0,0,1,0]=>2 [1,1,0,0,1,1,0,1,0,0]=>1 [1,1,0,0,1,1,1,0,0,0]=>1 [1,1,0,1,0,0,1,0,1,0]=>1 [1,1,0,1,0,0,1,1,0,0]=>1 [1,1,0,1,0,1,0,0,1,0]=>1 [1,1,0,1,0,1,0,1,0,0]=>0 [1,1,0,1,0,1,1,0,0,0]=>1 [1,1,0,1,1,0,0,0,1,0]=>3 [1,1,0,1,1,0,0,1,0,0]=>2 [1,1,0,1,1,0,1,0,0,0]=>2 [1,1,0,1,1,1,0,0,0,0]=>2 [1,1,1,0,0,0,1,0,1,0]=>0 [1,1,1,0,0,0,1,1,0,0]=>1 [1,1,1,0,0,1,0,0,1,0]=>1 [1,1,1,0,0,1,0,1,0,0]=>1 [1,1,1,0,0,1,1,0,0,0]=>2 [1,1,1,0,1,0,0,0,1,0]=>2 [1,1,1,0,1,0,0,1,0,0]=>2 [1,1,1,0,1,0,1,0,0,0]=>2 [1,1,1,0,1,1,0,0,0,0]=>3 [1,1,1,1,0,0,0,0,1,0]=>1 [1,1,1,1,0,0,0,1,0,0]=>2 [1,1,1,1,0,0,1,0,0,0]=>3 [1,1,1,1,0,1,0,0,0,0]=>4 [1,1,1,1,1,0,0,0,0,0]=>0 [1,0,1,0,1,0,1,0,1,0,1,0]=>0 [1,0,1,0,1,0,1,0,1,1,0,0]=>0 [1,0,1,0,1,0,1,1,0,0,1,0]=>1 [1,0,1,0,1,0,1,1,0,1,0,0]=>1 [1,0,1,0,1,0,1,1,1,0,0,0]=>0 [1,0,1,0,1,1,0,0,1,0,1,0]=>0 [1,0,1,0,1,1,0,0,1,1,0,0]=>1 [1,0,1,0,1,1,0,1,0,0,1,0]=>0 [1,0,1,0,1,1,0,1,0,1,0,0]=>1 [1,0,1,0,1,1,0,1,1,0,0,0]=>1 [1,0,1,0,1,1,1,0,0,0,1,0]=>1 [1,0,1,0,1,1,1,0,0,1,0,0]=>2 [1,0,1,0,1,1,1,0,1,0,0,0]=>2 [1,0,1,0,1,1,1,1,0,0,0,0]=>0 [1,0,1,1,0,0,1,0,1,0,1,0]=>1 [1,0,1,1,0,0,1,0,1,1,0,0]=>1 [1,0,1,1,0,0,1,1,0,0,1,0]=>3 [1,0,1,1,0,0,1,1,0,1,0,0]=>2 [1,0,1,1,0,0,1,1,1,0,0,0]=>2 [1,0,1,1,0,1,0,0,1,0,1,0]=>0 [1,0,1,1,0,1,0,0,1,1,0,0]=>0 [1,0,1,1,0,1,0,1,0,0,1,0]=>1 [1,0,1,1,0,1,0,1,0,1,0,0]=>0 [1,0,1,1,0,1,0,1,1,0,0,0]=>1 [1,0,1,1,0,1,1,0,0,0,1,0]=>2 [1,0,1,1,0,1,1,0,0,1,0,0]=>1 [1,0,1,1,0,1,1,0,1,0,0,0]=>2 [1,0,1,1,0,1,1,1,0,0,0,0]=>1 [1,0,1,1,1,0,0,0,1,0,1,0]=>1 [1,0,1,1,1,0,0,0,1,1,0,0]=>2 [1,0,1,1,1,0,0,1,0,0,1,0]=>2 [1,0,1,1,1,0,0,1,0,1,0,0]=>2 [1,0,1,1,1,0,0,1,1,0,0,0]=>3 [1,0,1,1,1,0,1,0,0,0,1,0]=>1 [1,0,1,1,1,0,1,0,0,1,0,0]=>1 [1,0,1,1,1,0,1,0,1,0,0,0]=>2 [1,0,1,1,1,0,1,1,0,0,0,0]=>2 [1,0,1,1,1,1,0,0,0,0,1,0]=>2 [1,0,1,1,1,1,0,0,0,1,0,0]=>3 [1,0,1,1,1,1,0,0,1,0,0,0]=>4 [1,0,1,1,1,1,0,1,0,0,0,0]=>3 [1,0,1,1,1,1,1,0,0,0,0,0]=>1 [1,1,0,0,1,0,1,0,1,0,1,0]=>0 [1,1,0,0,1,0,1,0,1,1,0,0]=>0 [1,1,0,0,1,0,1,1,0,0,1,0]=>1 [1,1,0,0,1,0,1,1,0,1,0,0]=>1 [1,1,0,0,1,0,1,1,1,0,0,0]=>0 [1,1,0,0,1,1,0,0,1,0,1,0]=>1 [1,1,0,0,1,1,0,0,1,1,0,0]=>2 [1,1,0,0,1,1,0,1,0,0,1,0]=>0 [1,1,0,0,1,1,0,1,0,1,0,0]=>1 [1,1,0,0,1,1,0,1,1,0,0,0]=>1 [1,1,0,0,1,1,1,0,0,0,1,0]=>2 [1,1,0,0,1,1,1,0,0,1,0,0]=>3 [1,1,0,0,1,1,1,0,1,0,0,0]=>2 [1,1,0,0,1,1,1,1,0,0,0,0]=>1 [1,1,0,1,0,0,1,0,1,0,1,0]=>1 [1,1,0,1,0,0,1,0,1,1,0,0]=>1 [1,1,0,1,0,0,1,1,0,0,1,0]=>2 [1,1,0,1,0,0,1,1,0,1,0,0]=>2 [1,1,0,1,0,0,1,1,1,0,0,0]=>1 [1,1,0,1,0,1,0,0,1,0,1,0]=>1 [1,1,0,1,0,1,0,0,1,1,0,0]=>1 [1,1,0,1,0,1,0,1,0,0,1,0]=>0 [1,1,0,1,0,1,0,1,0,1,0,0]=>0 [1,1,0,1,0,1,0,1,1,0,0,0]=>0 [1,1,0,1,0,1,1,0,0,0,1,0]=>2 [1,1,0,1,0,1,1,0,0,1,0,0]=>2 [1,1,0,1,0,1,1,0,1,0,0,0]=>1 [1,1,0,1,0,1,1,1,0,0,0,0]=>1 [1,1,0,1,1,0,0,0,1,0,1,0]=>2 [1,1,0,1,1,0,0,0,1,1,0,0]=>3 [1,1,0,1,1,0,0,1,0,0,1,0]=>1 [1,1,0,1,1,0,0,1,0,1,0,0]=>2 [1,1,0,1,1,0,0,1,1,0,0,0]=>2 [1,1,0,1,1,0,1,0,0,0,1,0]=>1 [1,1,0,1,1,0,1,0,0,1,0,0]=>2 [1,1,0,1,1,0,1,0,1,0,0,0]=>1 [1,1,0,1,1,0,1,1,0,0,0,0]=>2 [1,1,0,1,1,1,0,0,0,0,1,0]=>3 [1,1,0,1,1,1,0,0,0,1,0,0]=>4 [1,1,0,1,1,1,0,0,1,0,0,0]=>3 [1,1,0,1,1,1,0,1,0,0,0,0]=>3 [1,1,0,1,1,1,1,0,0,0,0,0]=>2 [1,1,1,0,0,0,1,0,1,0,1,0]=>0 [1,1,1,0,0,0,1,0,1,1,0,0]=>0 [1,1,1,0,0,0,1,1,0,0,1,0]=>2 [1,1,1,0,0,0,1,1,0,1,0,0]=>1 [1,1,1,0,0,0,1,1,1,0,0,0]=>1 [1,1,1,0,0,1,0,0,1,0,1,0]=>1 [1,1,1,0,0,1,0,0,1,1,0,0]=>1 [1,1,1,0,0,1,0,1,0,0,1,0]=>1 [1,1,1,0,0,1,0,1,0,1,0,0]=>0 [1,1,1,0,0,1,0,1,1,0,0,0]=>1 [1,1,1,0,0,1,1,0,0,0,1,0]=>3 [1,1,1,0,0,1,1,0,0,1,0,0]=>2 [1,1,1,0,0,1,1,0,1,0,0,0]=>2 [1,1,1,0,0,1,1,1,0,0,0,0]=>2 [1,1,1,0,1,0,0,0,1,0,1,0]=>2 [1,1,1,0,1,0,0,0,1,1,0,0]=>2 [1,1,1,0,1,0,0,1,0,0,1,0]=>2 [1,1,1,0,1,0,0,1,0,1,0,0]=>1 [1,1,1,0,1,0,0,1,1,0,0,0]=>2 [1,1,1,0,1,0,1,0,0,0,1,0]=>2 [1,1,1,0,1,0,1,0,0,1,0,0]=>1 [1,1,1,0,1,0,1,0,1,0,0,0]=>1 [1,1,1,0,1,0,1,1,0,0,0,0]=>2 [1,1,1,0,1,1,0,0,0,0,1,0]=>4 [1,1,1,0,1,1,0,0,0,1,0,0]=>3 [1,1,1,0,1,1,0,0,1,0,0,0]=>3 [1,1,1,0,1,1,0,1,0,0,0,0]=>3 [1,1,1,0,1,1,1,0,0,0,0,0]=>3 [1,1,1,1,0,0,0,0,1,0,1,0]=>0 [1,1,1,1,0,0,0,0,1,1,0,0]=>1 [1,1,1,1,0,0,0,1,0,0,1,0]=>1 [1,1,1,1,0,0,0,1,0,1,0,0]=>1 [1,1,1,1,0,0,0,1,1,0,0,0]=>2 [1,1,1,1,0,0,1,0,0,0,1,0]=>2 [1,1,1,1,0,0,1,0,0,1,0,0]=>2 [1,1,1,1,0,0,1,0,1,0,0,0]=>2 [1,1,1,1,0,0,1,1,0,0,0,0]=>3 [1,1,1,1,0,1,0,0,0,0,1,0]=>3 [1,1,1,1,0,1,0,0,0,1,0,0]=>3 [1,1,1,1,0,1,0,0,1,0,0,0]=>3 [1,1,1,1,0,1,0,1,0,0,0,0]=>3 [1,1,1,1,0,1,1,0,0,0,0,0]=>4 [1,1,1,1,1,0,0,0,0,0,1,0]=>1 [1,1,1,1,1,0,0,0,0,1,0,0]=>2 [1,1,1,1,1,0,0,0,1,0,0,0]=>3 [1,1,1,1,1,0,0,1,0,0,0,0]=>4 [1,1,1,1,1,0,1,0,0,0,0,0]=>5 [1,1,1,1,1,1,0,0,0,0,0,0]=>0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of indecomposable injective modules in the corresponding Nakayama algebra that have non-vanishing second Ext-group with the regular module.
Code
DeclareOperation("ext2inj",[IsList]);

InstallMethod(ext2inj, "for a representation of a quiver", [IsList],0,function(LIST)

local A,N,RegA,g,temmi,UT,M,L,U,simA,injA,UU;

A:=LIST[1];
injA:=IndecInjectiveModules(A);
RegA:=DirectSumOfQPAModules(IndecProjectiveModules(A));
U:=Filtered(injA,x->Size(ExtOverAlgebra(NthSyzygy(x,1),RegA)[2])>0);
return(Size(U));
end);

Created
Jun 20, 2018 at 23:50 by Rene Marczinzik
Updated
Jun 20, 2018 at 23:50 by Rene Marczinzik