edit this statistic or download as text // json
Identifier
Values
=>
Cc0005;cc-rep
[1,0]=>0 [1,0,1,0]=>1 [1,1,0,0]=>0 [1,0,1,0,1,0]=>2 [1,0,1,1,0,0]=>1 [1,1,0,0,1,0]=>1 [1,1,0,1,0,0]=>2 [1,1,1,0,0,0]=>0 [1,0,1,0,1,0,1,0]=>3 [1,0,1,0,1,1,0,0]=>2 [1,0,1,1,0,0,1,0]=>2 [1,0,1,1,0,1,0,0]=>3 [1,0,1,1,1,0,0,0]=>1 [1,1,0,0,1,0,1,0]=>2 [1,1,0,0,1,1,0,0]=>1 [1,1,0,1,0,0,1,0]=>3 [1,1,0,1,0,1,0,0]=>3 [1,1,0,1,1,0,0,0]=>2 [1,1,1,0,0,0,1,0]=>1 [1,1,1,0,0,1,0,0]=>2 [1,1,1,0,1,0,0,0]=>3 [1,1,1,1,0,0,0,0]=>0 [1,0,1,0,1,0,1,0,1,0]=>4 [1,0,1,0,1,0,1,1,0,0]=>3 [1,0,1,0,1,1,0,0,1,0]=>3 [1,0,1,0,1,1,0,1,0,0]=>4 [1,0,1,0,1,1,1,0,0,0]=>2 [1,0,1,1,0,0,1,0,1,0]=>3 [1,0,1,1,0,0,1,1,0,0]=>2 [1,0,1,1,0,1,0,0,1,0]=>4 [1,0,1,1,0,1,0,1,0,0]=>4 [1,0,1,1,0,1,1,0,0,0]=>3 [1,0,1,1,1,0,0,0,1,0]=>2 [1,0,1,1,1,0,0,1,0,0]=>3 [1,0,1,1,1,0,1,0,0,0]=>4 [1,0,1,1,1,1,0,0,0,0]=>1 [1,1,0,0,1,0,1,0,1,0]=>3 [1,1,0,0,1,0,1,1,0,0]=>2 [1,1,0,0,1,1,0,0,1,0]=>2 [1,1,0,0,1,1,0,1,0,0]=>3 [1,1,0,0,1,1,1,0,0,0]=>1 [1,1,0,1,0,0,1,0,1,0]=>4 [1,1,0,1,0,0,1,1,0,0]=>3 [1,1,0,1,0,1,0,0,1,0]=>4 [1,1,0,1,0,1,0,1,0,0]=>4 [1,1,0,1,0,1,1,0,0,0]=>3 [1,1,0,1,1,0,0,0,1,0]=>3 [1,1,0,1,1,0,0,1,0,0]=>4 [1,1,0,1,1,0,1,0,0,0]=>4 [1,1,0,1,1,1,0,0,0,0]=>2 [1,1,1,0,0,0,1,0,1,0]=>2 [1,1,1,0,0,0,1,1,0,0]=>1 [1,1,1,0,0,1,0,0,1,0]=>3 [1,1,1,0,0,1,0,1,0,0]=>3 [1,1,1,0,0,1,1,0,0,0]=>2 [1,1,1,0,1,0,0,0,1,0]=>4 [1,1,1,0,1,0,0,1,0,0]=>4 [1,1,1,0,1,0,1,0,0,0]=>4 [1,1,1,0,1,1,0,0,0,0]=>3 [1,1,1,1,0,0,0,0,1,0]=>1 [1,1,1,1,0,0,0,1,0,0]=>2 [1,1,1,1,0,0,1,0,0,0]=>3 [1,1,1,1,0,1,0,0,0,0]=>4 [1,1,1,1,1,0,0,0,0,0]=>0 [1,0,1,0,1,0,1,0,1,0,1,0]=>5 [1,0,1,0,1,0,1,0,1,1,0,0]=>4 [1,0,1,0,1,0,1,1,0,0,1,0]=>4 [1,0,1,0,1,0,1,1,0,1,0,0]=>5 [1,0,1,0,1,0,1,1,1,0,0,0]=>3 [1,0,1,0,1,1,0,0,1,0,1,0]=>4 [1,0,1,0,1,1,0,0,1,1,0,0]=>3 [1,0,1,0,1,1,0,1,0,0,1,0]=>5 [1,0,1,0,1,1,0,1,0,1,0,0]=>5 [1,0,1,0,1,1,0,1,1,0,0,0]=>4 [1,0,1,0,1,1,1,0,0,0,1,0]=>3 [1,0,1,0,1,1,1,0,0,1,0,0]=>4 [1,0,1,0,1,1,1,0,1,0,0,0]=>5 [1,0,1,0,1,1,1,1,0,0,0,0]=>2 [1,0,1,1,0,0,1,0,1,0,1,0]=>4 [1,0,1,1,0,0,1,0,1,1,0,0]=>3 [1,0,1,1,0,0,1,1,0,0,1,0]=>3 [1,0,1,1,0,0,1,1,0,1,0,0]=>4 [1,0,1,1,0,0,1,1,1,0,0,0]=>2 [1,0,1,1,0,1,0,0,1,0,1,0]=>5 [1,0,1,1,0,1,0,0,1,1,0,0]=>4 [1,0,1,1,0,1,0,1,0,0,1,0]=>5 [1,0,1,1,0,1,0,1,0,1,0,0]=>5 [1,0,1,1,0,1,0,1,1,0,0,0]=>4 [1,0,1,1,0,1,1,0,0,0,1,0]=>4 [1,0,1,1,0,1,1,0,0,1,0,0]=>5 [1,0,1,1,0,1,1,0,1,0,0,0]=>5 [1,0,1,1,0,1,1,1,0,0,0,0]=>3 [1,0,1,1,1,0,0,0,1,0,1,0]=>3 [1,0,1,1,1,0,0,0,1,1,0,0]=>2 [1,0,1,1,1,0,0,1,0,0,1,0]=>4 [1,0,1,1,1,0,0,1,0,1,0,0]=>4 [1,0,1,1,1,0,0,1,1,0,0,0]=>3 [1,0,1,1,1,0,1,0,0,0,1,0]=>5 [1,0,1,1,1,0,1,0,0,1,0,0]=>5 [1,0,1,1,1,0,1,0,1,0,0,0]=>5 [1,0,1,1,1,0,1,1,0,0,0,0]=>4 [1,0,1,1,1,1,0,0,0,0,1,0]=>2 [1,0,1,1,1,1,0,0,0,1,0,0]=>3 [1,0,1,1,1,1,0,0,1,0,0,0]=>4 [1,0,1,1,1,1,0,1,0,0,0,0]=>5 [1,0,1,1,1,1,1,0,0,0,0,0]=>1 [1,1,0,0,1,0,1,0,1,0,1,0]=>4 [1,1,0,0,1,0,1,0,1,1,0,0]=>3 [1,1,0,0,1,0,1,1,0,0,1,0]=>3 [1,1,0,0,1,0,1,1,0,1,0,0]=>4 [1,1,0,0,1,0,1,1,1,0,0,0]=>2 [1,1,0,0,1,1,0,0,1,0,1,0]=>3 [1,1,0,0,1,1,0,0,1,1,0,0]=>2 [1,1,0,0,1,1,0,1,0,0,1,0]=>4 [1,1,0,0,1,1,0,1,0,1,0,0]=>4 [1,1,0,0,1,1,0,1,1,0,0,0]=>3 [1,1,0,0,1,1,1,0,0,0,1,0]=>2 [1,1,0,0,1,1,1,0,0,1,0,0]=>3 [1,1,0,0,1,1,1,0,1,0,0,0]=>4 [1,1,0,0,1,1,1,1,0,0,0,0]=>1 [1,1,0,1,0,0,1,0,1,0,1,0]=>5 [1,1,0,1,0,0,1,0,1,1,0,0]=>4 [1,1,0,1,0,0,1,1,0,0,1,0]=>4 [1,1,0,1,0,0,1,1,0,1,0,0]=>5 [1,1,0,1,0,0,1,1,1,0,0,0]=>3 [1,1,0,1,0,1,0,0,1,0,1,0]=>5 [1,1,0,1,0,1,0,0,1,1,0,0]=>4 [1,1,0,1,0,1,0,1,0,0,1,0]=>5 [1,1,0,1,0,1,0,1,0,1,0,0]=>5 [1,1,0,1,0,1,0,1,1,0,0,0]=>4 [1,1,0,1,0,1,1,0,0,0,1,0]=>4 [1,1,0,1,0,1,1,0,0,1,0,0]=>5 [1,1,0,1,0,1,1,0,1,0,0,0]=>5 [1,1,0,1,0,1,1,1,0,0,0,0]=>3 [1,1,0,1,1,0,0,0,1,0,1,0]=>4 [1,1,0,1,1,0,0,0,1,1,0,0]=>3 [1,1,0,1,1,0,0,1,0,0,1,0]=>5 [1,1,0,1,1,0,0,1,0,1,0,0]=>5 [1,1,0,1,1,0,0,1,1,0,0,0]=>4 [1,1,0,1,1,0,1,0,0,0,1,0]=>5 [1,1,0,1,1,0,1,0,0,1,0,0]=>5 [1,1,0,1,1,0,1,0,1,0,0,0]=>5 [1,1,0,1,1,0,1,1,0,0,0,0]=>4 [1,1,0,1,1,1,0,0,0,0,1,0]=>3 [1,1,0,1,1,1,0,0,0,1,0,0]=>4 [1,1,0,1,1,1,0,0,1,0,0,0]=>5 [1,1,0,1,1,1,0,1,0,0,0,0]=>5 [1,1,0,1,1,1,1,0,0,0,0,0]=>2 [1,1,1,0,0,0,1,0,1,0,1,0]=>3 [1,1,1,0,0,0,1,0,1,1,0,0]=>2 [1,1,1,0,0,0,1,1,0,0,1,0]=>2 [1,1,1,0,0,0,1,1,0,1,0,0]=>3 [1,1,1,0,0,0,1,1,1,0,0,0]=>1 [1,1,1,0,0,1,0,0,1,0,1,0]=>4 [1,1,1,0,0,1,0,0,1,1,0,0]=>3 [1,1,1,0,0,1,0,1,0,0,1,0]=>4 [1,1,1,0,0,1,0,1,0,1,0,0]=>4 [1,1,1,0,0,1,0,1,1,0,0,0]=>3 [1,1,1,0,0,1,1,0,0,0,1,0]=>3 [1,1,1,0,0,1,1,0,0,1,0,0]=>4 [1,1,1,0,0,1,1,0,1,0,0,0]=>4 [1,1,1,0,0,1,1,1,0,0,0,0]=>2 [1,1,1,0,1,0,0,0,1,0,1,0]=>5 [1,1,1,0,1,0,0,0,1,1,0,0]=>4 [1,1,1,0,1,0,0,1,0,0,1,0]=>5 [1,1,1,0,1,0,0,1,0,1,0,0]=>5 [1,1,1,0,1,0,0,1,1,0,0,0]=>4 [1,1,1,0,1,0,1,0,0,0,1,0]=>5 [1,1,1,0,1,0,1,0,0,1,0,0]=>5 [1,1,1,0,1,0,1,0,1,0,0,0]=>5 [1,1,1,0,1,0,1,1,0,0,0,0]=>4 [1,1,1,0,1,1,0,0,0,0,1,0]=>4 [1,1,1,0,1,1,0,0,0,1,0,0]=>5 [1,1,1,0,1,1,0,0,1,0,0,0]=>5 [1,1,1,0,1,1,0,1,0,0,0,0]=>5 [1,1,1,0,1,1,1,0,0,0,0,0]=>3 [1,1,1,1,0,0,0,0,1,0,1,0]=>2 [1,1,1,1,0,0,0,0,1,1,0,0]=>1 [1,1,1,1,0,0,0,1,0,0,1,0]=>3 [1,1,1,1,0,0,0,1,0,1,0,0]=>3 [1,1,1,1,0,0,0,1,1,0,0,0]=>2 [1,1,1,1,0,0,1,0,0,0,1,0]=>4 [1,1,1,1,0,0,1,0,0,1,0,0]=>4 [1,1,1,1,0,0,1,0,1,0,0,0]=>4 [1,1,1,1,0,0,1,1,0,0,0,0]=>3 [1,1,1,1,0,1,0,0,0,0,1,0]=>5 [1,1,1,1,0,1,0,0,0,1,0,0]=>5 [1,1,1,1,0,1,0,0,1,0,0,0]=>5 [1,1,1,1,0,1,0,1,0,0,0,0]=>5 [1,1,1,1,0,1,1,0,0,0,0,0]=>4 [1,1,1,1,1,0,0,0,0,0,1,0]=>1 [1,1,1,1,1,0,0,0,0,1,0,0]=>2 [1,1,1,1,1,0,0,0,1,0,0,0]=>3 [1,1,1,1,1,0,0,1,0,0,0,0]=>4 [1,1,1,1,1,0,1,0,0,0,0,0]=>5 [1,1,1,1,1,1,0,0,0,0,0,0]=>0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The vector space dimension of the first extension group between J and itself when J is the Jacobson radical of the corresponding Nakayama algebra.
Code
DeclareOperation("ext1rad", [IsList]);

InstallMethod(ext1rad, "for a representation of a quiver", [IsList],0,function(L)

local A,RegA,J,simA,U;
A:=L[1];
RegA:=DirectSumOfQPAModules(IndecProjectiveModules(A));
J:=RadicalOfModule(RegA);
return(Size(ExtOverAlgebra(NthSyzygy(J,0),J)[2]));
end
);

Created
Jul 18, 2018 at 12:05 by Rene Marczinzik
Updated
Jul 18, 2018 at 17:04 by Rene Marczinzik