Identifier
- St001228: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[1,0]=>1
[1,0,1,0]=>2
[1,1,0,0]=>3
[1,0,1,0,1,0]=>3
[1,0,1,1,0,0]=>4
[1,1,0,0,1,0]=>4
[1,1,0,1,0,0]=>5
[1,1,1,0,0,0]=>6
[1,0,1,0,1,0,1,0]=>4
[1,0,1,0,1,1,0,0]=>5
[1,0,1,1,0,0,1,0]=>5
[1,0,1,1,0,1,0,0]=>6
[1,0,1,1,1,0,0,0]=>7
[1,1,0,0,1,0,1,0]=>5
[1,1,0,0,1,1,0,0]=>6
[1,1,0,1,0,0,1,0]=>6
[1,1,0,1,0,1,0,0]=>7
[1,1,0,1,1,0,0,0]=>8
[1,1,1,0,0,0,1,0]=>7
[1,1,1,0,0,1,0,0]=>8
[1,1,1,0,1,0,0,0]=>9
[1,1,1,1,0,0,0,0]=>10
[1,0,1,0,1,0,1,0,1,0]=>5
[1,0,1,0,1,0,1,1,0,0]=>6
[1,0,1,0,1,1,0,0,1,0]=>6
[1,0,1,0,1,1,0,1,0,0]=>7
[1,0,1,0,1,1,1,0,0,0]=>8
[1,0,1,1,0,0,1,0,1,0]=>6
[1,0,1,1,0,0,1,1,0,0]=>7
[1,0,1,1,0,1,0,0,1,0]=>7
[1,0,1,1,0,1,0,1,0,0]=>8
[1,0,1,1,0,1,1,0,0,0]=>9
[1,0,1,1,1,0,0,0,1,0]=>8
[1,0,1,1,1,0,0,1,0,0]=>9
[1,0,1,1,1,0,1,0,0,0]=>10
[1,0,1,1,1,1,0,0,0,0]=>11
[1,1,0,0,1,0,1,0,1,0]=>6
[1,1,0,0,1,0,1,1,0,0]=>7
[1,1,0,0,1,1,0,0,1,0]=>7
[1,1,0,0,1,1,0,1,0,0]=>8
[1,1,0,0,1,1,1,0,0,0]=>9
[1,1,0,1,0,0,1,0,1,0]=>7
[1,1,0,1,0,0,1,1,0,0]=>8
[1,1,0,1,0,1,0,0,1,0]=>8
[1,1,0,1,0,1,0,1,0,0]=>9
[1,1,0,1,0,1,1,0,0,0]=>10
[1,1,0,1,1,0,0,0,1,0]=>9
[1,1,0,1,1,0,0,1,0,0]=>10
[1,1,0,1,1,0,1,0,0,0]=>11
[1,1,0,1,1,1,0,0,0,0]=>12
[1,1,1,0,0,0,1,0,1,0]=>8
[1,1,1,0,0,0,1,1,0,0]=>9
[1,1,1,0,0,1,0,0,1,0]=>9
[1,1,1,0,0,1,0,1,0,0]=>10
[1,1,1,0,0,1,1,0,0,0]=>11
[1,1,1,0,1,0,0,0,1,0]=>10
[1,1,1,0,1,0,0,1,0,0]=>11
[1,1,1,0,1,0,1,0,0,0]=>12
[1,1,1,0,1,1,0,0,0,0]=>13
[1,1,1,1,0,0,0,0,1,0]=>11
[1,1,1,1,0,0,0,1,0,0]=>12
[1,1,1,1,0,0,1,0,0,0]=>13
[1,1,1,1,0,1,0,0,0,0]=>14
[1,1,1,1,1,0,0,0,0,0]=>15
[1,0,1,0,1,0,1,0,1,0,1,0]=>6
[1,0,1,0,1,0,1,0,1,1,0,0]=>7
[1,0,1,0,1,0,1,1,0,0,1,0]=>7
[1,0,1,0,1,0,1,1,0,1,0,0]=>8
[1,0,1,0,1,0,1,1,1,0,0,0]=>9
[1,0,1,0,1,1,0,0,1,0,1,0]=>7
[1,0,1,0,1,1,0,0,1,1,0,0]=>8
[1,0,1,0,1,1,0,1,0,0,1,0]=>8
[1,0,1,0,1,1,0,1,0,1,0,0]=>9
[1,0,1,0,1,1,0,1,1,0,0,0]=>10
[1,0,1,0,1,1,1,0,0,0,1,0]=>9
[1,0,1,0,1,1,1,0,0,1,0,0]=>10
[1,0,1,0,1,1,1,0,1,0,0,0]=>11
[1,0,1,0,1,1,1,1,0,0,0,0]=>12
[1,0,1,1,0,0,1,0,1,0,1,0]=>7
[1,0,1,1,0,0,1,0,1,1,0,0]=>8
[1,0,1,1,0,0,1,1,0,0,1,0]=>8
[1,0,1,1,0,0,1,1,0,1,0,0]=>9
[1,0,1,1,0,0,1,1,1,0,0,0]=>10
[1,0,1,1,0,1,0,0,1,0,1,0]=>8
[1,0,1,1,0,1,0,0,1,1,0,0]=>9
[1,0,1,1,0,1,0,1,0,0,1,0]=>9
[1,0,1,1,0,1,0,1,0,1,0,0]=>10
[1,0,1,1,0,1,0,1,1,0,0,0]=>11
[1,0,1,1,0,1,1,0,0,0,1,0]=>10
[1,0,1,1,0,1,1,0,0,1,0,0]=>11
[1,0,1,1,0,1,1,0,1,0,0,0]=>12
[1,0,1,1,0,1,1,1,0,0,0,0]=>13
[1,0,1,1,1,0,0,0,1,0,1,0]=>9
[1,0,1,1,1,0,0,0,1,1,0,0]=>10
[1,0,1,1,1,0,0,1,0,0,1,0]=>10
[1,0,1,1,1,0,0,1,0,1,0,0]=>11
[1,0,1,1,1,0,0,1,1,0,0,0]=>12
[1,0,1,1,1,0,1,0,0,0,1,0]=>11
[1,0,1,1,1,0,1,0,0,1,0,0]=>12
[1,0,1,1,1,0,1,0,1,0,0,0]=>13
[1,0,1,1,1,0,1,1,0,0,0,0]=>14
[1,0,1,1,1,1,0,0,0,0,1,0]=>12
[1,0,1,1,1,1,0,0,0,1,0,0]=>13
[1,0,1,1,1,1,0,0,1,0,0,0]=>14
[1,0,1,1,1,1,0,1,0,0,0,0]=>15
[1,0,1,1,1,1,1,0,0,0,0,0]=>16
[1,1,0,0,1,0,1,0,1,0,1,0]=>7
[1,1,0,0,1,0,1,0,1,1,0,0]=>8
[1,1,0,0,1,0,1,1,0,0,1,0]=>8
[1,1,0,0,1,0,1,1,0,1,0,0]=>9
[1,1,0,0,1,0,1,1,1,0,0,0]=>10
[1,1,0,0,1,1,0,0,1,0,1,0]=>8
[1,1,0,0,1,1,0,0,1,1,0,0]=>9
[1,1,0,0,1,1,0,1,0,0,1,0]=>9
[1,1,0,0,1,1,0,1,0,1,0,0]=>10
[1,1,0,0,1,1,0,1,1,0,0,0]=>11
[1,1,0,0,1,1,1,0,0,0,1,0]=>10
[1,1,0,0,1,1,1,0,0,1,0,0]=>11
[1,1,0,0,1,1,1,0,1,0,0,0]=>12
[1,1,0,0,1,1,1,1,0,0,0,0]=>13
[1,1,0,1,0,0,1,0,1,0,1,0]=>8
[1,1,0,1,0,0,1,0,1,1,0,0]=>9
[1,1,0,1,0,0,1,1,0,0,1,0]=>9
[1,1,0,1,0,0,1,1,0,1,0,0]=>10
[1,1,0,1,0,0,1,1,1,0,0,0]=>11
[1,1,0,1,0,1,0,0,1,0,1,0]=>9
[1,1,0,1,0,1,0,0,1,1,0,0]=>10
[1,1,0,1,0,1,0,1,0,0,1,0]=>10
[1,1,0,1,0,1,0,1,0,1,0,0]=>11
[1,1,0,1,0,1,0,1,1,0,0,0]=>12
[1,1,0,1,0,1,1,0,0,0,1,0]=>11
[1,1,0,1,0,1,1,0,0,1,0,0]=>12
[1,1,0,1,0,1,1,0,1,0,0,0]=>13
[1,1,0,1,0,1,1,1,0,0,0,0]=>14
[1,1,0,1,1,0,0,0,1,0,1,0]=>10
[1,1,0,1,1,0,0,0,1,1,0,0]=>11
[1,1,0,1,1,0,0,1,0,0,1,0]=>11
[1,1,0,1,1,0,0,1,0,1,0,0]=>12
[1,1,0,1,1,0,0,1,1,0,0,0]=>13
[1,1,0,1,1,0,1,0,0,0,1,0]=>12
[1,1,0,1,1,0,1,0,0,1,0,0]=>13
[1,1,0,1,1,0,1,0,1,0,0,0]=>14
[1,1,0,1,1,0,1,1,0,0,0,0]=>15
[1,1,0,1,1,1,0,0,0,0,1,0]=>13
[1,1,0,1,1,1,0,0,0,1,0,0]=>14
[1,1,0,1,1,1,0,0,1,0,0,0]=>15
[1,1,0,1,1,1,0,1,0,0,0,0]=>16
[1,1,0,1,1,1,1,0,0,0,0,0]=>17
[1,1,1,0,0,0,1,0,1,0,1,0]=>9
[1,1,1,0,0,0,1,0,1,1,0,0]=>10
[1,1,1,0,0,0,1,1,0,0,1,0]=>10
[1,1,1,0,0,0,1,1,0,1,0,0]=>11
[1,1,1,0,0,0,1,1,1,0,0,0]=>12
[1,1,1,0,0,1,0,0,1,0,1,0]=>10
[1,1,1,0,0,1,0,0,1,1,0,0]=>11
[1,1,1,0,0,1,0,1,0,0,1,0]=>11
[1,1,1,0,0,1,0,1,0,1,0,0]=>12
[1,1,1,0,0,1,0,1,1,0,0,0]=>13
[1,1,1,0,0,1,1,0,0,0,1,0]=>12
[1,1,1,0,0,1,1,0,0,1,0,0]=>13
[1,1,1,0,0,1,1,0,1,0,0,0]=>14
[1,1,1,0,0,1,1,1,0,0,0,0]=>15
[1,1,1,0,1,0,0,0,1,0,1,0]=>11
[1,1,1,0,1,0,0,0,1,1,0,0]=>12
[1,1,1,0,1,0,0,1,0,0,1,0]=>12
[1,1,1,0,1,0,0,1,0,1,0,0]=>13
[1,1,1,0,1,0,0,1,1,0,0,0]=>14
[1,1,1,0,1,0,1,0,0,0,1,0]=>13
[1,1,1,0,1,0,1,0,0,1,0,0]=>14
[1,1,1,0,1,0,1,0,1,0,0,0]=>15
[1,1,1,0,1,0,1,1,0,0,0,0]=>16
[1,1,1,0,1,1,0,0,0,0,1,0]=>14
[1,1,1,0,1,1,0,0,0,1,0,0]=>15
[1,1,1,0,1,1,0,0,1,0,0,0]=>16
[1,1,1,0,1,1,0,1,0,0,0,0]=>17
[1,1,1,0,1,1,1,0,0,0,0,0]=>18
[1,1,1,1,0,0,0,0,1,0,1,0]=>12
[1,1,1,1,0,0,0,0,1,1,0,0]=>13
[1,1,1,1,0,0,0,1,0,0,1,0]=>13
[1,1,1,1,0,0,0,1,0,1,0,0]=>14
[1,1,1,1,0,0,0,1,1,0,0,0]=>15
[1,1,1,1,0,0,1,0,0,0,1,0]=>14
[1,1,1,1,0,0,1,0,0,1,0,0]=>15
[1,1,1,1,0,0,1,0,1,0,0,0]=>16
[1,1,1,1,0,0,1,1,0,0,0,0]=>17
[1,1,1,1,0,1,0,0,0,0,1,0]=>15
[1,1,1,1,0,1,0,0,0,1,0,0]=>16
[1,1,1,1,0,1,0,0,1,0,0,0]=>17
[1,1,1,1,0,1,0,1,0,0,0,0]=>18
[1,1,1,1,0,1,1,0,0,0,0,0]=>19
[1,1,1,1,1,0,0,0,0,0,1,0]=>16
[1,1,1,1,1,0,0,0,0,1,0,0]=>17
[1,1,1,1,1,0,0,0,1,0,0,0]=>18
[1,1,1,1,1,0,0,1,0,0,0,0]=>19
[1,1,1,1,1,0,1,0,0,0,0,0]=>20
[1,1,1,1,1,1,0,0,0,0,0,0]=>21
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The vector space dimension of the space of module homomorphisms between J and itself when J denotes the Jacobson radical of the corresponding Nakayama algebra.
Code
DeclareOperation("dimhomjj",[IsList]); InstallMethod(dimhomjj, "for a representation of a quiver", [IsList],0,function(LIST) local A,simA,M,g,n,U,RegA,J; A:=LIST[1]; RegA:=DirectSumOfQPAModules(IndecProjectiveModules(A)); J:=RadicalOfModule(RegA); return(Size(HomOverAlgebra(J,J))); end);
Created
Jul 19, 2018 at 23:34 by Rene Marczinzik
Updated
Jul 19, 2018 at 23:34 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!