edit this statistic or download as text // json
Identifier
Values
=>
Cc0005;cc-rep
[1,0]=>1 [1,0,1,0]=>2 [1,1,0,0]=>3 [1,0,1,0,1,0]=>3 [1,0,1,1,0,0]=>4 [1,1,0,0,1,0]=>4 [1,1,0,1,0,0]=>5 [1,1,1,0,0,0]=>6 [1,0,1,0,1,0,1,0]=>4 [1,0,1,0,1,1,0,0]=>5 [1,0,1,1,0,0,1,0]=>5 [1,0,1,1,0,1,0,0]=>6 [1,0,1,1,1,0,0,0]=>7 [1,1,0,0,1,0,1,0]=>5 [1,1,0,0,1,1,0,0]=>6 [1,1,0,1,0,0,1,0]=>6 [1,1,0,1,0,1,0,0]=>7 [1,1,0,1,1,0,0,0]=>8 [1,1,1,0,0,0,1,0]=>7 [1,1,1,0,0,1,0,0]=>8 [1,1,1,0,1,0,0,0]=>9 [1,1,1,1,0,0,0,0]=>10 [1,0,1,0,1,0,1,0,1,0]=>5 [1,0,1,0,1,0,1,1,0,0]=>6 [1,0,1,0,1,1,0,0,1,0]=>6 [1,0,1,0,1,1,0,1,0,0]=>7 [1,0,1,0,1,1,1,0,0,0]=>8 [1,0,1,1,0,0,1,0,1,0]=>6 [1,0,1,1,0,0,1,1,0,0]=>7 [1,0,1,1,0,1,0,0,1,0]=>7 [1,0,1,1,0,1,0,1,0,0]=>8 [1,0,1,1,0,1,1,0,0,0]=>9 [1,0,1,1,1,0,0,0,1,0]=>8 [1,0,1,1,1,0,0,1,0,0]=>9 [1,0,1,1,1,0,1,0,0,0]=>10 [1,0,1,1,1,1,0,0,0,0]=>11 [1,1,0,0,1,0,1,0,1,0]=>6 [1,1,0,0,1,0,1,1,0,0]=>7 [1,1,0,0,1,1,0,0,1,0]=>7 [1,1,0,0,1,1,0,1,0,0]=>8 [1,1,0,0,1,1,1,0,0,0]=>9 [1,1,0,1,0,0,1,0,1,0]=>7 [1,1,0,1,0,0,1,1,0,0]=>8 [1,1,0,1,0,1,0,0,1,0]=>8 [1,1,0,1,0,1,0,1,0,0]=>9 [1,1,0,1,0,1,1,0,0,0]=>10 [1,1,0,1,1,0,0,0,1,0]=>9 [1,1,0,1,1,0,0,1,0,0]=>10 [1,1,0,1,1,0,1,0,0,0]=>11 [1,1,0,1,1,1,0,0,0,0]=>12 [1,1,1,0,0,0,1,0,1,0]=>8 [1,1,1,0,0,0,1,1,0,0]=>9 [1,1,1,0,0,1,0,0,1,0]=>9 [1,1,1,0,0,1,0,1,0,0]=>10 [1,1,1,0,0,1,1,0,0,0]=>11 [1,1,1,0,1,0,0,0,1,0]=>10 [1,1,1,0,1,0,0,1,0,0]=>11 [1,1,1,0,1,0,1,0,0,0]=>12 [1,1,1,0,1,1,0,0,0,0]=>13 [1,1,1,1,0,0,0,0,1,0]=>11 [1,1,1,1,0,0,0,1,0,0]=>12 [1,1,1,1,0,0,1,0,0,0]=>13 [1,1,1,1,0,1,0,0,0,0]=>14 [1,1,1,1,1,0,0,0,0,0]=>15 [1,0,1,0,1,0,1,0,1,0,1,0]=>6 [1,0,1,0,1,0,1,0,1,1,0,0]=>7 [1,0,1,0,1,0,1,1,0,0,1,0]=>7 [1,0,1,0,1,0,1,1,0,1,0,0]=>8 [1,0,1,0,1,0,1,1,1,0,0,0]=>9 [1,0,1,0,1,1,0,0,1,0,1,0]=>7 [1,0,1,0,1,1,0,0,1,1,0,0]=>8 [1,0,1,0,1,1,0,1,0,0,1,0]=>8 [1,0,1,0,1,1,0,1,0,1,0,0]=>9 [1,0,1,0,1,1,0,1,1,0,0,0]=>10 [1,0,1,0,1,1,1,0,0,0,1,0]=>9 [1,0,1,0,1,1,1,0,0,1,0,0]=>10 [1,0,1,0,1,1,1,0,1,0,0,0]=>11 [1,0,1,0,1,1,1,1,0,0,0,0]=>12 [1,0,1,1,0,0,1,0,1,0,1,0]=>7 [1,0,1,1,0,0,1,0,1,1,0,0]=>8 [1,0,1,1,0,0,1,1,0,0,1,0]=>8 [1,0,1,1,0,0,1,1,0,1,0,0]=>9 [1,0,1,1,0,0,1,1,1,0,0,0]=>10 [1,0,1,1,0,1,0,0,1,0,1,0]=>8 [1,0,1,1,0,1,0,0,1,1,0,0]=>9 [1,0,1,1,0,1,0,1,0,0,1,0]=>9 [1,0,1,1,0,1,0,1,0,1,0,0]=>10 [1,0,1,1,0,1,0,1,1,0,0,0]=>11 [1,0,1,1,0,1,1,0,0,0,1,0]=>10 [1,0,1,1,0,1,1,0,0,1,0,0]=>11 [1,0,1,1,0,1,1,0,1,0,0,0]=>12 [1,0,1,1,0,1,1,1,0,0,0,0]=>13 [1,0,1,1,1,0,0,0,1,0,1,0]=>9 [1,0,1,1,1,0,0,0,1,1,0,0]=>10 [1,0,1,1,1,0,0,1,0,0,1,0]=>10 [1,0,1,1,1,0,0,1,0,1,0,0]=>11 [1,0,1,1,1,0,0,1,1,0,0,0]=>12 [1,0,1,1,1,0,1,0,0,0,1,0]=>11 [1,0,1,1,1,0,1,0,0,1,0,0]=>12 [1,0,1,1,1,0,1,0,1,0,0,0]=>13 [1,0,1,1,1,0,1,1,0,0,0,0]=>14 [1,0,1,1,1,1,0,0,0,0,1,0]=>12 [1,0,1,1,1,1,0,0,0,1,0,0]=>13 [1,0,1,1,1,1,0,0,1,0,0,0]=>14 [1,0,1,1,1,1,0,1,0,0,0,0]=>15 [1,0,1,1,1,1,1,0,0,0,0,0]=>16 [1,1,0,0,1,0,1,0,1,0,1,0]=>7 [1,1,0,0,1,0,1,0,1,1,0,0]=>8 [1,1,0,0,1,0,1,1,0,0,1,0]=>8 [1,1,0,0,1,0,1,1,0,1,0,0]=>9 [1,1,0,0,1,0,1,1,1,0,0,0]=>10 [1,1,0,0,1,1,0,0,1,0,1,0]=>8 [1,1,0,0,1,1,0,0,1,1,0,0]=>9 [1,1,0,0,1,1,0,1,0,0,1,0]=>9 [1,1,0,0,1,1,0,1,0,1,0,0]=>10 [1,1,0,0,1,1,0,1,1,0,0,0]=>11 [1,1,0,0,1,1,1,0,0,0,1,0]=>10 [1,1,0,0,1,1,1,0,0,1,0,0]=>11 [1,1,0,0,1,1,1,0,1,0,0,0]=>12 [1,1,0,0,1,1,1,1,0,0,0,0]=>13 [1,1,0,1,0,0,1,0,1,0,1,0]=>8 [1,1,0,1,0,0,1,0,1,1,0,0]=>9 [1,1,0,1,0,0,1,1,0,0,1,0]=>9 [1,1,0,1,0,0,1,1,0,1,0,0]=>10 [1,1,0,1,0,0,1,1,1,0,0,0]=>11 [1,1,0,1,0,1,0,0,1,0,1,0]=>9 [1,1,0,1,0,1,0,0,1,1,0,0]=>10 [1,1,0,1,0,1,0,1,0,0,1,0]=>10 [1,1,0,1,0,1,0,1,0,1,0,0]=>11 [1,1,0,1,0,1,0,1,1,0,0,0]=>12 [1,1,0,1,0,1,1,0,0,0,1,0]=>11 [1,1,0,1,0,1,1,0,0,1,0,0]=>12 [1,1,0,1,0,1,1,0,1,0,0,0]=>13 [1,1,0,1,0,1,1,1,0,0,0,0]=>14 [1,1,0,1,1,0,0,0,1,0,1,0]=>10 [1,1,0,1,1,0,0,0,1,1,0,0]=>11 [1,1,0,1,1,0,0,1,0,0,1,0]=>11 [1,1,0,1,1,0,0,1,0,1,0,0]=>12 [1,1,0,1,1,0,0,1,1,0,0,0]=>13 [1,1,0,1,1,0,1,0,0,0,1,0]=>12 [1,1,0,1,1,0,1,0,0,1,0,0]=>13 [1,1,0,1,1,0,1,0,1,0,0,0]=>14 [1,1,0,1,1,0,1,1,0,0,0,0]=>15 [1,1,0,1,1,1,0,0,0,0,1,0]=>13 [1,1,0,1,1,1,0,0,0,1,0,0]=>14 [1,1,0,1,1,1,0,0,1,0,0,0]=>15 [1,1,0,1,1,1,0,1,0,0,0,0]=>16 [1,1,0,1,1,1,1,0,0,0,0,0]=>17 [1,1,1,0,0,0,1,0,1,0,1,0]=>9 [1,1,1,0,0,0,1,0,1,1,0,0]=>10 [1,1,1,0,0,0,1,1,0,0,1,0]=>10 [1,1,1,0,0,0,1,1,0,1,0,0]=>11 [1,1,1,0,0,0,1,1,1,0,0,0]=>12 [1,1,1,0,0,1,0,0,1,0,1,0]=>10 [1,1,1,0,0,1,0,0,1,1,0,0]=>11 [1,1,1,0,0,1,0,1,0,0,1,0]=>11 [1,1,1,0,0,1,0,1,0,1,0,0]=>12 [1,1,1,0,0,1,0,1,1,0,0,0]=>13 [1,1,1,0,0,1,1,0,0,0,1,0]=>12 [1,1,1,0,0,1,1,0,0,1,0,0]=>13 [1,1,1,0,0,1,1,0,1,0,0,0]=>14 [1,1,1,0,0,1,1,1,0,0,0,0]=>15 [1,1,1,0,1,0,0,0,1,0,1,0]=>11 [1,1,1,0,1,0,0,0,1,1,0,0]=>12 [1,1,1,0,1,0,0,1,0,0,1,0]=>12 [1,1,1,0,1,0,0,1,0,1,0,0]=>13 [1,1,1,0,1,0,0,1,1,0,0,0]=>14 [1,1,1,0,1,0,1,0,0,0,1,0]=>13 [1,1,1,0,1,0,1,0,0,1,0,0]=>14 [1,1,1,0,1,0,1,0,1,0,0,0]=>15 [1,1,1,0,1,0,1,1,0,0,0,0]=>16 [1,1,1,0,1,1,0,0,0,0,1,0]=>14 [1,1,1,0,1,1,0,0,0,1,0,0]=>15 [1,1,1,0,1,1,0,0,1,0,0,0]=>16 [1,1,1,0,1,1,0,1,0,0,0,0]=>17 [1,1,1,0,1,1,1,0,0,0,0,0]=>18 [1,1,1,1,0,0,0,0,1,0,1,0]=>12 [1,1,1,1,0,0,0,0,1,1,0,0]=>13 [1,1,1,1,0,0,0,1,0,0,1,0]=>13 [1,1,1,1,0,0,0,1,0,1,0,0]=>14 [1,1,1,1,0,0,0,1,1,0,0,0]=>15 [1,1,1,1,0,0,1,0,0,0,1,0]=>14 [1,1,1,1,0,0,1,0,0,1,0,0]=>15 [1,1,1,1,0,0,1,0,1,0,0,0]=>16 [1,1,1,1,0,0,1,1,0,0,0,0]=>17 [1,1,1,1,0,1,0,0,0,0,1,0]=>15 [1,1,1,1,0,1,0,0,0,1,0,0]=>16 [1,1,1,1,0,1,0,0,1,0,0,0]=>17 [1,1,1,1,0,1,0,1,0,0,0,0]=>18 [1,1,1,1,0,1,1,0,0,0,0,0]=>19 [1,1,1,1,1,0,0,0,0,0,1,0]=>16 [1,1,1,1,1,0,0,0,0,1,0,0]=>17 [1,1,1,1,1,0,0,0,1,0,0,0]=>18 [1,1,1,1,1,0,0,1,0,0,0,0]=>19 [1,1,1,1,1,0,1,0,0,0,0,0]=>20 [1,1,1,1,1,1,0,0,0,0,0,0]=>21
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The vector space dimension of the space of module homomorphisms between J and itself when J denotes the Jacobson radical of the corresponding Nakayama algebra.
Code
DeclareOperation("dimhomjj",[IsList]);

InstallMethod(dimhomjj, "for a representation of a quiver", [IsList],0,function(LIST)

local A,simA,M,g,n,U,RegA,J;

A:=LIST[1];
RegA:=DirectSumOfQPAModules(IndecProjectiveModules(A));
J:=RadicalOfModule(RegA);

return(Size(HomOverAlgebra(J,J)));
end);

Created
Jul 19, 2018 at 23:34 by Rene Marczinzik
Updated
Jul 19, 2018 at 23:34 by Rene Marczinzik