Identifier
- St001231: Dyck paths ⟶ ℤ (values match St001234The number of indecomposable three dimensional modules with projective dimension one.)
Values
=>
Cc0005;cc-rep
[1,0]=>0
[1,0,1,0]=>0
[1,1,0,0]=>0
[1,0,1,0,1,0]=>0
[1,0,1,1,0,0]=>0
[1,1,0,0,1,0]=>0
[1,1,0,1,0,0]=>0
[1,1,1,0,0,0]=>1
[1,0,1,0,1,0,1,0]=>0
[1,0,1,0,1,1,0,0]=>0
[1,0,1,1,0,0,1,0]=>0
[1,0,1,1,0,1,0,0]=>0
[1,0,1,1,1,0,0,0]=>0
[1,1,0,0,1,0,1,0]=>0
[1,1,0,0,1,1,0,0]=>0
[1,1,0,1,0,0,1,0]=>0
[1,1,0,1,0,1,0,0]=>0
[1,1,0,1,1,0,0,0]=>0
[1,1,1,0,0,0,1,0]=>1
[1,1,1,0,0,1,0,0]=>1
[1,1,1,0,1,0,0,0]=>1
[1,1,1,1,0,0,0,0]=>2
[1,0,1,0,1,0,1,0,1,0]=>0
[1,0,1,0,1,0,1,1,0,0]=>0
[1,0,1,0,1,1,0,0,1,0]=>0
[1,0,1,0,1,1,0,1,0,0]=>0
[1,0,1,0,1,1,1,0,0,0]=>0
[1,0,1,1,0,0,1,0,1,0]=>0
[1,0,1,1,0,0,1,1,0,0]=>0
[1,0,1,1,0,1,0,0,1,0]=>0
[1,0,1,1,0,1,0,1,0,0]=>0
[1,0,1,1,0,1,1,0,0,0]=>0
[1,0,1,1,1,0,0,0,1,0]=>0
[1,0,1,1,1,0,0,1,0,0]=>0
[1,0,1,1,1,0,1,0,0,0]=>0
[1,0,1,1,1,1,0,0,0,0]=>1
[1,1,0,0,1,0,1,0,1,0]=>0
[1,1,0,0,1,0,1,1,0,0]=>0
[1,1,0,0,1,1,0,0,1,0]=>0
[1,1,0,0,1,1,0,1,0,0]=>0
[1,1,0,0,1,1,1,0,0,0]=>0
[1,1,0,1,0,0,1,0,1,0]=>0
[1,1,0,1,0,0,1,1,0,0]=>0
[1,1,0,1,0,1,0,0,1,0]=>0
[1,1,0,1,0,1,0,1,0,0]=>0
[1,1,0,1,0,1,1,0,0,0]=>0
[1,1,0,1,1,0,0,0,1,0]=>0
[1,1,0,1,1,0,0,1,0,0]=>0
[1,1,0,1,1,0,1,0,0,0]=>0
[1,1,0,1,1,1,0,0,0,0]=>0
[1,1,1,0,0,0,1,0,1,0]=>1
[1,1,1,0,0,0,1,1,0,0]=>1
[1,1,1,0,0,1,0,0,1,0]=>1
[1,1,1,0,0,1,0,1,0,0]=>1
[1,1,1,0,0,1,1,0,0,0]=>1
[1,1,1,0,1,0,0,0,1,0]=>1
[1,1,1,0,1,0,0,1,0,0]=>1
[1,1,1,0,1,0,1,0,0,0]=>1
[1,1,1,0,1,1,0,0,0,0]=>1
[1,1,1,1,0,0,0,0,1,0]=>2
[1,1,1,1,0,0,0,1,0,0]=>2
[1,1,1,1,0,0,1,0,0,0]=>2
[1,1,1,1,0,1,0,0,0,0]=>2
[1,1,1,1,1,0,0,0,0,0]=>3
[1,0,1,0,1,0,1,0,1,0,1,0]=>0
[1,0,1,0,1,0,1,0,1,1,0,0]=>0
[1,0,1,0,1,0,1,1,0,0,1,0]=>0
[1,0,1,0,1,0,1,1,0,1,0,0]=>0
[1,0,1,0,1,0,1,1,1,0,0,0]=>0
[1,0,1,0,1,1,0,0,1,0,1,0]=>0
[1,0,1,0,1,1,0,0,1,1,0,0]=>0
[1,0,1,0,1,1,0,1,0,0,1,0]=>0
[1,0,1,0,1,1,0,1,0,1,0,0]=>0
[1,0,1,0,1,1,0,1,1,0,0,0]=>0
[1,0,1,0,1,1,1,0,0,0,1,0]=>0
[1,0,1,0,1,1,1,0,0,1,0,0]=>0
[1,0,1,0,1,1,1,0,1,0,0,0]=>0
[1,0,1,0,1,1,1,1,0,0,0,0]=>1
[1,0,1,1,0,0,1,0,1,0,1,0]=>0
[1,0,1,1,0,0,1,0,1,1,0,0]=>0
[1,0,1,1,0,0,1,1,0,0,1,0]=>0
[1,0,1,1,0,0,1,1,0,1,0,0]=>0
[1,0,1,1,0,0,1,1,1,0,0,0]=>0
[1,0,1,1,0,1,0,0,1,0,1,0]=>0
[1,0,1,1,0,1,0,0,1,1,0,0]=>0
[1,0,1,1,0,1,0,1,0,0,1,0]=>0
[1,0,1,1,0,1,0,1,0,1,0,0]=>0
[1,0,1,1,0,1,0,1,1,0,0,0]=>0
[1,0,1,1,0,1,1,0,0,0,1,0]=>0
[1,0,1,1,0,1,1,0,0,1,0,0]=>0
[1,0,1,1,0,1,1,0,1,0,0,0]=>0
[1,0,1,1,0,1,1,1,0,0,0,0]=>0
[1,0,1,1,1,0,0,0,1,0,1,0]=>0
[1,0,1,1,1,0,0,0,1,1,0,0]=>0
[1,0,1,1,1,0,0,1,0,0,1,0]=>0
[1,0,1,1,1,0,0,1,0,1,0,0]=>0
[1,0,1,1,1,0,0,1,1,0,0,0]=>0
[1,0,1,1,1,0,1,0,0,0,1,0]=>0
[1,0,1,1,1,0,1,0,0,1,0,0]=>0
[1,0,1,1,1,0,1,0,1,0,0,0]=>0
[1,0,1,1,1,0,1,1,0,0,0,0]=>0
[1,0,1,1,1,1,0,0,0,0,1,0]=>1
[1,0,1,1,1,1,0,0,0,1,0,0]=>1
[1,0,1,1,1,1,0,0,1,0,0,0]=>1
[1,0,1,1,1,1,0,1,0,0,0,0]=>1
[1,0,1,1,1,1,1,0,0,0,0,0]=>2
[1,1,0,0,1,0,1,0,1,0,1,0]=>0
[1,1,0,0,1,0,1,0,1,1,0,0]=>0
[1,1,0,0,1,0,1,1,0,0,1,0]=>0
[1,1,0,0,1,0,1,1,0,1,0,0]=>0
[1,1,0,0,1,0,1,1,1,0,0,0]=>0
[1,1,0,0,1,1,0,0,1,0,1,0]=>0
[1,1,0,0,1,1,0,0,1,1,0,0]=>0
[1,1,0,0,1,1,0,1,0,0,1,0]=>0
[1,1,0,0,1,1,0,1,0,1,0,0]=>0
[1,1,0,0,1,1,0,1,1,0,0,0]=>0
[1,1,0,0,1,1,1,0,0,0,1,0]=>0
[1,1,0,0,1,1,1,0,0,1,0,0]=>0
[1,1,0,0,1,1,1,0,1,0,0,0]=>0
[1,1,0,0,1,1,1,1,0,0,0,0]=>1
[1,1,0,1,0,0,1,0,1,0,1,0]=>0
[1,1,0,1,0,0,1,0,1,1,0,0]=>0
[1,1,0,1,0,0,1,1,0,0,1,0]=>0
[1,1,0,1,0,0,1,1,0,1,0,0]=>0
[1,1,0,1,0,0,1,1,1,0,0,0]=>0
[1,1,0,1,0,1,0,0,1,0,1,0]=>0
[1,1,0,1,0,1,0,0,1,1,0,0]=>0
[1,1,0,1,0,1,0,1,0,0,1,0]=>0
[1,1,0,1,0,1,0,1,0,1,0,0]=>0
[1,1,0,1,0,1,0,1,1,0,0,0]=>0
[1,1,0,1,0,1,1,0,0,0,1,0]=>0
[1,1,0,1,0,1,1,0,0,1,0,0]=>0
[1,1,0,1,0,1,1,0,1,0,0,0]=>0
[1,1,0,1,0,1,1,1,0,0,0,0]=>0
[1,1,0,1,1,0,0,0,1,0,1,0]=>0
[1,1,0,1,1,0,0,0,1,1,0,0]=>0
[1,1,0,1,1,0,0,1,0,0,1,0]=>0
[1,1,0,1,1,0,0,1,0,1,0,0]=>0
[1,1,0,1,1,0,0,1,1,0,0,0]=>0
[1,1,0,1,1,0,1,0,0,0,1,0]=>0
[1,1,0,1,1,0,1,0,0,1,0,0]=>0
[1,1,0,1,1,0,1,0,1,0,0,0]=>0
[1,1,0,1,1,0,1,1,0,0,0,0]=>0
[1,1,0,1,1,1,0,0,0,0,1,0]=>0
[1,1,0,1,1,1,0,0,0,1,0,0]=>0
[1,1,0,1,1,1,0,0,1,0,0,0]=>0
[1,1,0,1,1,1,0,1,0,0,0,0]=>0
[1,1,0,1,1,1,1,0,0,0,0,0]=>1
[1,1,1,0,0,0,1,0,1,0,1,0]=>1
[1,1,1,0,0,0,1,0,1,1,0,0]=>1
[1,1,1,0,0,0,1,1,0,0,1,0]=>1
[1,1,1,0,0,0,1,1,0,1,0,0]=>1
[1,1,1,0,0,0,1,1,1,0,0,0]=>1
[1,1,1,0,0,1,0,0,1,0,1,0]=>1
[1,1,1,0,0,1,0,0,1,1,0,0]=>1
[1,1,1,0,0,1,0,1,0,0,1,0]=>1
[1,1,1,0,0,1,0,1,0,1,0,0]=>1
[1,1,1,0,0,1,0,1,1,0,0,0]=>1
[1,1,1,0,0,1,1,0,0,0,1,0]=>1
[1,1,1,0,0,1,1,0,0,1,0,0]=>1
[1,1,1,0,0,1,1,0,1,0,0,0]=>1
[1,1,1,0,0,1,1,1,0,0,0,0]=>1
[1,1,1,0,1,0,0,0,1,0,1,0]=>1
[1,1,1,0,1,0,0,0,1,1,0,0]=>1
[1,1,1,0,1,0,0,1,0,0,1,0]=>1
[1,1,1,0,1,0,0,1,0,1,0,0]=>1
[1,1,1,0,1,0,0,1,1,0,0,0]=>1
[1,1,1,0,1,0,1,0,0,0,1,0]=>1
[1,1,1,0,1,0,1,0,0,1,0,0]=>1
[1,1,1,0,1,0,1,0,1,0,0,0]=>1
[1,1,1,0,1,0,1,1,0,0,0,0]=>1
[1,1,1,0,1,1,0,0,0,0,1,0]=>1
[1,1,1,0,1,1,0,0,0,1,0,0]=>1
[1,1,1,0,1,1,0,0,1,0,0,0]=>1
[1,1,1,0,1,1,0,1,0,0,0,0]=>1
[1,1,1,0,1,1,1,0,0,0,0,0]=>1
[1,1,1,1,0,0,0,0,1,0,1,0]=>2
[1,1,1,1,0,0,0,0,1,1,0,0]=>2
[1,1,1,1,0,0,0,1,0,0,1,0]=>2
[1,1,1,1,0,0,0,1,0,1,0,0]=>2
[1,1,1,1,0,0,0,1,1,0,0,0]=>2
[1,1,1,1,0,0,1,0,0,0,1,0]=>2
[1,1,1,1,0,0,1,0,0,1,0,0]=>2
[1,1,1,1,0,0,1,0,1,0,0,0]=>2
[1,1,1,1,0,0,1,1,0,0,0,0]=>2
[1,1,1,1,0,1,0,0,0,0,1,0]=>2
[1,1,1,1,0,1,0,0,0,1,0,0]=>2
[1,1,1,1,0,1,0,0,1,0,0,0]=>2
[1,1,1,1,0,1,0,1,0,0,0,0]=>2
[1,1,1,1,0,1,1,0,0,0,0,0]=>2
[1,1,1,1,1,0,0,0,0,0,1,0]=>3
[1,1,1,1,1,0,0,0,0,1,0,0]=>3
[1,1,1,1,1,0,0,0,1,0,0,0]=>3
[1,1,1,1,1,0,0,1,0,0,0,0]=>3
[1,1,1,1,1,0,1,0,0,0,0,0]=>3
[1,1,1,1,1,1,0,0,0,0,0,0]=>4
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of simple modules that are non-projective and non-injective with the property that they have projective dimension equal to one and that also the Auslander-Reiten translates of the module and the inverse Auslander-Reiten translate of the module have the same projective dimension.
Actually the same statistics results for algebras with at most 7 simple modules when dropping the assumption that the module has projective dimension one. The author is not sure whether this holds in general.
Actually the same statistics results for algebras with at most 7 simple modules when dropping the assumption that the module has projective dimension one. The author is not sure whether this holds in general.
Code
DeclareOperation("neighbortest",[IsList]); InstallMethod(neighbortest, "for a representation of a quiver", [IsList],0,function(LIST) local A,LL,LL2,U,simA; A:=LIST[1]; simA:=Filtered(SimpleModules(A),x->IsProjectiveModule(x)=false and IsInjectiveModule(x)=false and ProjDimensionOfModule(x,30)<=1); U:=Filtered(simA,x->ProjDimensionOfModule(x,30)=ProjDimensionOfModule(DTr(x),30) and ProjDimensionOfModule(x,30)=ProjDimensionOfModule(TrD(x),30)); return(Size(U)); end);
Created
Aug 08, 2018 at 13:01 by Rene Marczinzik
Updated
Aug 08, 2018 at 13:01 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!