edit this statistic or download as text // json
Identifier
Values
=>
Cc0005;cc-rep
[1,0]=>0 [1,0,1,0]=>1 [1,1,0,0]=>0 [1,0,1,1,0,0]=>2 [1,1,0,0,1,0]=>1 [1,1,0,1,0,0]=>2 [1,1,1,0,0,0]=>0 [1,0,1,1,0,0,1,0]=>3 [1,0,1,1,1,0,0,0]=>3 [1,1,0,0,1,1,0,0]=>2 [1,1,0,1,1,0,0,0]=>4 [1,1,1,0,0,0,1,0]=>1 [1,1,1,0,0,1,0,0]=>2 [1,1,1,0,1,0,0,0]=>3 [1,1,1,1,0,0,0,0]=>0 [1,0,1,1,0,0,1,1,0,0]=>4 [1,0,1,1,1,0,0,0,1,0]=>4 [1,0,1,1,1,0,0,1,0,0]=>5 [1,0,1,1,1,1,0,0,0,0]=>4 [1,1,0,0,1,1,0,0,1,0]=>3 [1,1,0,0,1,1,1,0,0,0]=>3 [1,1,0,1,1,0,0,0,1,0]=>5 [1,1,0,1,1,1,0,0,0,0]=>6 [1,1,1,0,0,0,1,1,0,0]=>2 [1,1,1,0,0,1,1,0,0,0]=>4 [1,1,1,0,1,1,0,0,0,0]=>6 [1,1,1,1,0,0,0,0,1,0]=>1 [1,1,1,1,0,0,0,1,0,0]=>2 [1,1,1,1,0,0,1,0,0,0]=>3 [1,1,1,1,0,1,0,0,0,0]=>4 [1,1,1,1,1,0,0,0,0,0]=>0 [1,0,1,1,0,0,1,1,0,0,1,0]=>5 [1,0,1,1,0,0,1,1,1,0,0,0]=>5 [1,0,1,1,1,0,0,0,1,1,0,0]=>5 [1,0,1,1,1,0,0,1,1,0,0,0]=>7 [1,0,1,1,1,1,0,0,0,0,1,0]=>5 [1,0,1,1,1,1,0,0,0,1,0,0]=>6 [1,0,1,1,1,1,0,0,1,0,0,0]=>7 [1,0,1,1,1,1,1,0,0,0,0,0]=>5 [1,1,0,0,1,1,0,0,1,1,0,0]=>4 [1,1,0,0,1,1,1,0,0,0,1,0]=>4 [1,1,0,0,1,1,1,0,0,1,0,0]=>5 [1,1,0,0,1,1,1,1,0,0,0,0]=>4 [1,1,0,1,1,0,0,0,1,1,0,0]=>6 [1,1,0,1,1,1,0,0,0,0,1,0]=>7 [1,1,0,1,1,1,0,0,0,1,0,0]=>8 [1,1,0,1,1,1,1,0,0,0,0,0]=>8 [1,1,1,0,0,0,1,1,0,0,1,0]=>3 [1,1,1,0,0,0,1,1,1,0,0,0]=>3 [1,1,1,0,0,1,1,0,0,0,1,0]=>5 [1,1,1,0,0,1,1,1,0,0,0,0]=>6 [1,1,1,0,1,1,0,0,0,0,1,0]=>7 [1,1,1,0,1,1,1,0,0,0,0,0]=>9 [1,1,1,1,0,0,0,0,1,1,0,0]=>2 [1,1,1,1,0,0,0,1,1,0,0,0]=>4 [1,1,1,1,0,0,1,1,0,0,0,0]=>6 [1,1,1,1,0,1,1,0,0,0,0,0]=>8 [1,1,1,1,1,0,0,0,0,0,1,0]=>1 [1,1,1,1,1,0,0,0,0,1,0,0]=>2 [1,1,1,1,1,0,0,0,1,0,0,0]=>3 [1,1,1,1,1,0,0,1,0,0,0,0]=>4 [1,1,1,1,1,0,1,0,0,0,0,0]=>5 [1,1,1,1,1,1,0,0,0,0,0,0]=>0 [1,0,1,1,0,0,1,1,0,0,1,1,0,0]=>6 [1,0,1,1,0,0,1,1,1,0,0,0,1,0]=>6 [1,0,1,1,0,0,1,1,1,0,0,1,0,0]=>7 [1,0,1,1,0,0,1,1,1,1,0,0,0,0]=>6 [1,0,1,1,1,0,0,0,1,1,0,0,1,0]=>6 [1,0,1,1,1,0,0,0,1,1,1,0,0,0]=>6 [1,0,1,1,1,0,0,1,1,0,0,0,1,0]=>8 [1,0,1,1,1,0,0,1,1,1,0,0,0,0]=>9 [1,0,1,1,1,1,0,0,0,0,1,1,0,0]=>6 [1,0,1,1,1,1,0,0,0,1,1,0,0,0]=>8 [1,0,1,1,1,1,0,0,1,1,0,0,0,0]=>10 [1,0,1,1,1,1,1,0,0,0,0,0,1,0]=>6 [1,0,1,1,1,1,1,0,0,0,0,1,0,0]=>7 [1,0,1,1,1,1,1,0,0,0,1,0,0,0]=>8 [1,0,1,1,1,1,1,0,0,1,0,0,0,0]=>9 [1,0,1,1,1,1,1,1,0,0,0,0,0,0]=>6 [1,1,0,0,1,1,0,0,1,1,0,0,1,0]=>5 [1,1,0,0,1,1,0,0,1,1,1,0,0,0]=>5 [1,1,0,0,1,1,1,0,0,0,1,1,0,0]=>5 [1,1,0,0,1,1,1,0,0,1,1,0,0,0]=>7 [1,1,0,0,1,1,1,1,0,0,0,0,1,0]=>5 [1,1,0,0,1,1,1,1,0,0,0,1,0,0]=>6 [1,1,0,0,1,1,1,1,0,0,1,0,0,0]=>7 [1,1,0,0,1,1,1,1,1,0,0,0,0,0]=>5 [1,1,0,1,1,0,0,0,1,1,0,0,1,0]=>7 [1,1,0,1,1,0,0,0,1,1,1,0,0,0]=>7 [1,1,0,1,1,1,0,0,0,0,1,1,0,0]=>8 [1,1,0,1,1,1,0,0,0,1,1,0,0,0]=>10 [1,1,0,1,1,1,1,0,0,0,0,0,1,0]=>9 [1,1,0,1,1,1,1,0,0,0,0,1,0,0]=>10 [1,1,0,1,1,1,1,0,0,0,1,0,0,0]=>11 [1,1,0,1,1,1,1,1,0,0,0,0,0,0]=>10 [1,1,1,0,0,0,1,1,0,0,1,1,0,0]=>4 [1,1,1,0,0,0,1,1,1,0,0,0,1,0]=>4 [1,1,1,0,0,0,1,1,1,0,0,1,0,0]=>5 [1,1,1,0,0,0,1,1,1,1,0,0,0,0]=>4 [1,1,1,0,0,1,1,0,0,0,1,1,0,0]=>6 [1,1,1,0,0,1,1,1,0,0,0,0,1,0]=>7 [1,1,1,0,0,1,1,1,0,0,0,1,0,0]=>8 [1,1,1,0,0,1,1,1,1,0,0,0,0,0]=>8 [1,1,1,0,1,1,0,0,0,0,1,1,0,0]=>8 [1,1,1,0,1,1,1,0,0,0,0,0,1,0]=>10 [1,1,1,0,1,1,1,0,0,0,0,1,0,0]=>11 [1,1,1,0,1,1,1,1,0,0,0,0,0,0]=>12 [1,1,1,1,0,0,0,0,1,1,0,0,1,0]=>3 [1,1,1,1,0,0,0,0,1,1,1,0,0,0]=>3 [1,1,1,1,0,0,0,1,1,0,0,0,1,0]=>5 [1,1,1,1,0,0,0,1,1,1,0,0,0,0]=>6 [1,1,1,1,0,0,1,1,0,0,0,0,1,0]=>7 [1,1,1,1,0,0,1,1,1,0,0,0,0,0]=>9 [1,1,1,1,0,1,1,0,0,0,0,0,1,0]=>9 [1,1,1,1,0,1,1,1,0,0,0,0,0,0]=>12 [1,1,1,1,1,0,0,0,0,0,1,1,0,0]=>2 [1,1,1,1,1,0,0,0,0,1,1,0,0,0]=>4 [1,1,1,1,1,0,0,0,1,1,0,0,0,0]=>6 [1,1,1,1,1,0,0,1,1,0,0,0,0,0]=>8 [1,1,1,1,1,0,1,1,0,0,0,0,0,0]=>10 [1,1,1,1,1,1,0,0,0,0,0,0,1,0]=>1 [1,1,1,1,1,1,0,0,0,0,0,1,0,0]=>2 [1,1,1,1,1,1,0,0,0,0,1,0,0,0]=>3 [1,1,1,1,1,1,0,0,0,1,0,0,0,0]=>4 [1,1,1,1,1,1,0,0,1,0,0,0,0,0]=>5 [1,1,1,1,1,1,0,1,0,0,0,0,0,0]=>6 [1,1,1,1,1,1,1,0,0,0,0,0,0,0]=>0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Code
DeclareOperation("2dimprojoew",[IsList]);

InstallMethod(2dimprojoew, "for a representation of a quiver", [IsList],0,function(LIST)

local A,LL,LL2,U,simA;

A:=LIST[1];
LL:=ARQuiverNak([A]);
U:=Filtered(LL,x->ProjDimensionOfModule(x,30)=2);
return(Size(U));
end);

Created
Aug 08, 2018 at 12:13 by Rene Marczinzik
Updated
Aug 08, 2018 at 12:13 by Rene Marczinzik