Identifier
- St001232: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[1,0]=>0
[1,0,1,0]=>1
[1,1,0,0]=>0
[1,0,1,1,0,0]=>2
[1,1,0,0,1,0]=>1
[1,1,0,1,0,0]=>2
[1,1,1,0,0,0]=>0
[1,0,1,1,0,0,1,0]=>3
[1,0,1,1,1,0,0,0]=>3
[1,1,0,0,1,1,0,0]=>2
[1,1,0,1,1,0,0,0]=>4
[1,1,1,0,0,0,1,0]=>1
[1,1,1,0,0,1,0,0]=>2
[1,1,1,0,1,0,0,0]=>3
[1,1,1,1,0,0,0,0]=>0
[1,0,1,1,0,0,1,1,0,0]=>4
[1,0,1,1,1,0,0,0,1,0]=>4
[1,0,1,1,1,0,0,1,0,0]=>5
[1,0,1,1,1,1,0,0,0,0]=>4
[1,1,0,0,1,1,0,0,1,0]=>3
[1,1,0,0,1,1,1,0,0,0]=>3
[1,1,0,1,1,0,0,0,1,0]=>5
[1,1,0,1,1,1,0,0,0,0]=>6
[1,1,1,0,0,0,1,1,0,0]=>2
[1,1,1,0,0,1,1,0,0,0]=>4
[1,1,1,0,1,1,0,0,0,0]=>6
[1,1,1,1,0,0,0,0,1,0]=>1
[1,1,1,1,0,0,0,1,0,0]=>2
[1,1,1,1,0,0,1,0,0,0]=>3
[1,1,1,1,0,1,0,0,0,0]=>4
[1,1,1,1,1,0,0,0,0,0]=>0
[1,0,1,1,0,0,1,1,0,0,1,0]=>5
[1,0,1,1,0,0,1,1,1,0,0,0]=>5
[1,0,1,1,1,0,0,0,1,1,0,0]=>5
[1,0,1,1,1,0,0,1,1,0,0,0]=>7
[1,0,1,1,1,1,0,0,0,0,1,0]=>5
[1,0,1,1,1,1,0,0,0,1,0,0]=>6
[1,0,1,1,1,1,0,0,1,0,0,0]=>7
[1,0,1,1,1,1,1,0,0,0,0,0]=>5
[1,1,0,0,1,1,0,0,1,1,0,0]=>4
[1,1,0,0,1,1,1,0,0,0,1,0]=>4
[1,1,0,0,1,1,1,0,0,1,0,0]=>5
[1,1,0,0,1,1,1,1,0,0,0,0]=>4
[1,1,0,1,1,0,0,0,1,1,0,0]=>6
[1,1,0,1,1,1,0,0,0,0,1,0]=>7
[1,1,0,1,1,1,0,0,0,1,0,0]=>8
[1,1,0,1,1,1,1,0,0,0,0,0]=>8
[1,1,1,0,0,0,1,1,0,0,1,0]=>3
[1,1,1,0,0,0,1,1,1,0,0,0]=>3
[1,1,1,0,0,1,1,0,0,0,1,0]=>5
[1,1,1,0,0,1,1,1,0,0,0,0]=>6
[1,1,1,0,1,1,0,0,0,0,1,0]=>7
[1,1,1,0,1,1,1,0,0,0,0,0]=>9
[1,1,1,1,0,0,0,0,1,1,0,0]=>2
[1,1,1,1,0,0,0,1,1,0,0,0]=>4
[1,1,1,1,0,0,1,1,0,0,0,0]=>6
[1,1,1,1,0,1,1,0,0,0,0,0]=>8
[1,1,1,1,1,0,0,0,0,0,1,0]=>1
[1,1,1,1,1,0,0,0,0,1,0,0]=>2
[1,1,1,1,1,0,0,0,1,0,0,0]=>3
[1,1,1,1,1,0,0,1,0,0,0,0]=>4
[1,1,1,1,1,0,1,0,0,0,0,0]=>5
[1,1,1,1,1,1,0,0,0,0,0,0]=>0
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]=>6
[1,0,1,1,0,0,1,1,1,0,0,0,1,0]=>6
[1,0,1,1,0,0,1,1,1,0,0,1,0,0]=>7
[1,0,1,1,0,0,1,1,1,1,0,0,0,0]=>6
[1,0,1,1,1,0,0,0,1,1,0,0,1,0]=>6
[1,0,1,1,1,0,0,0,1,1,1,0,0,0]=>6
[1,0,1,1,1,0,0,1,1,0,0,0,1,0]=>8
[1,0,1,1,1,0,0,1,1,1,0,0,0,0]=>9
[1,0,1,1,1,1,0,0,0,0,1,1,0,0]=>6
[1,0,1,1,1,1,0,0,0,1,1,0,0,0]=>8
[1,0,1,1,1,1,0,0,1,1,0,0,0,0]=>10
[1,0,1,1,1,1,1,0,0,0,0,0,1,0]=>6
[1,0,1,1,1,1,1,0,0,0,0,1,0,0]=>7
[1,0,1,1,1,1,1,0,0,0,1,0,0,0]=>8
[1,0,1,1,1,1,1,0,0,1,0,0,0,0]=>9
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]=>6
[1,1,0,0,1,1,0,0,1,1,0,0,1,0]=>5
[1,1,0,0,1,1,0,0,1,1,1,0,0,0]=>5
[1,1,0,0,1,1,1,0,0,0,1,1,0,0]=>5
[1,1,0,0,1,1,1,0,0,1,1,0,0,0]=>7
[1,1,0,0,1,1,1,1,0,0,0,0,1,0]=>5
[1,1,0,0,1,1,1,1,0,0,0,1,0,0]=>6
[1,1,0,0,1,1,1,1,0,0,1,0,0,0]=>7
[1,1,0,0,1,1,1,1,1,0,0,0,0,0]=>5
[1,1,0,1,1,0,0,0,1,1,0,0,1,0]=>7
[1,1,0,1,1,0,0,0,1,1,1,0,0,0]=>7
[1,1,0,1,1,1,0,0,0,0,1,1,0,0]=>8
[1,1,0,1,1,1,0,0,0,1,1,0,0,0]=>10
[1,1,0,1,1,1,1,0,0,0,0,0,1,0]=>9
[1,1,0,1,1,1,1,0,0,0,0,1,0,0]=>10
[1,1,0,1,1,1,1,0,0,0,1,0,0,0]=>11
[1,1,0,1,1,1,1,1,0,0,0,0,0,0]=>10
[1,1,1,0,0,0,1,1,0,0,1,1,0,0]=>4
[1,1,1,0,0,0,1,1,1,0,0,0,1,0]=>4
[1,1,1,0,0,0,1,1,1,0,0,1,0,0]=>5
[1,1,1,0,0,0,1,1,1,1,0,0,0,0]=>4
[1,1,1,0,0,1,1,0,0,0,1,1,0,0]=>6
[1,1,1,0,0,1,1,1,0,0,0,0,1,0]=>7
[1,1,1,0,0,1,1,1,0,0,0,1,0,0]=>8
[1,1,1,0,0,1,1,1,1,0,0,0,0,0]=>8
[1,1,1,0,1,1,0,0,0,0,1,1,0,0]=>8
[1,1,1,0,1,1,1,0,0,0,0,0,1,0]=>10
[1,1,1,0,1,1,1,0,0,0,0,1,0,0]=>11
[1,1,1,0,1,1,1,1,0,0,0,0,0,0]=>12
[1,1,1,1,0,0,0,0,1,1,0,0,1,0]=>3
[1,1,1,1,0,0,0,0,1,1,1,0,0,0]=>3
[1,1,1,1,0,0,0,1,1,0,0,0,1,0]=>5
[1,1,1,1,0,0,0,1,1,1,0,0,0,0]=>6
[1,1,1,1,0,0,1,1,0,0,0,0,1,0]=>7
[1,1,1,1,0,0,1,1,1,0,0,0,0,0]=>9
[1,1,1,1,0,1,1,0,0,0,0,0,1,0]=>9
[1,1,1,1,0,1,1,1,0,0,0,0,0,0]=>12
[1,1,1,1,1,0,0,0,0,0,1,1,0,0]=>2
[1,1,1,1,1,0,0,0,0,1,1,0,0,0]=>4
[1,1,1,1,1,0,0,0,1,1,0,0,0,0]=>6
[1,1,1,1,1,0,0,1,1,0,0,0,0,0]=>8
[1,1,1,1,1,0,1,1,0,0,0,0,0,0]=>10
[1,1,1,1,1,1,0,0,0,0,0,0,1,0]=>1
[1,1,1,1,1,1,0,0,0,0,0,1,0,0]=>2
[1,1,1,1,1,1,0,0,0,0,1,0,0,0]=>3
[1,1,1,1,1,1,0,0,0,1,0,0,0,0]=>4
[1,1,1,1,1,1,0,0,1,0,0,0,0,0]=>5
[1,1,1,1,1,1,0,1,0,0,0,0,0,0]=>6
[1,1,1,1,1,1,1,0,0,0,0,0,0,0]=>0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Code
DeclareOperation("2dimprojoew",[IsList]); InstallMethod(2dimprojoew, "for a representation of a quiver", [IsList],0,function(LIST) local A,LL,LL2,U,simA; A:=LIST[1]; LL:=ARQuiverNak([A]); U:=Filtered(LL,x->ProjDimensionOfModule(x,30)=2); return(Size(U)); end);
Created
Aug 08, 2018 at 12:13 by Rene Marczinzik
Updated
Aug 08, 2018 at 12:13 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!