edit this statistic or download as text // json
Identifier
Values
=>
[1]=>1 [1,1]=>2 [2]=>1 [1,1,1]=>3 [1,2]=>1 [2,1]=>1 [3]=>1 [1,1,1,1]=>4 [1,1,2]=>1 [1,2,1]=>2 [1,3]=>1 [2,1,1]=>1 [2,2]=>1 [3,1]=>1 [4]=>1 [1,1,1,1,1]=>5 [1,1,1,2]=>1 [1,1,2,1]=>2 [1,1,3]=>1 [1,2,1,1]=>2 [1,2,2]=>1 [1,3,1]=>1 [1,4]=>1 [2,1,1,1]=>1 [2,1,2]=>1 [2,2,1]=>1 [2,3]=>1 [3,1,1]=>1 [3,2]=>1 [4,1]=>1 [5]=>1 [1,1,1,1,1,1]=>6 [1,1,1,1,2]=>1 [1,1,1,2,1]=>2 [1,1,1,3]=>1 [1,1,2,1,1]=>3 [1,1,2,2]=>1 [1,1,3,1]=>1 [1,1,4]=>1 [1,2,1,1,1]=>2 [1,2,1,2]=>1 [1,2,2,1]=>2 [1,2,3]=>1 [1,3,1,1]=>1 [1,3,2]=>1 [1,4,1]=>1 [1,5]=>1 [2,1,1,1,1]=>1 [2,1,1,2]=>1 [2,1,2,1]=>1 [2,1,3]=>1 [2,2,1,1]=>1 [2,2,2]=>1 [2,3,1]=>1 [2,4]=>1 [3,1,1,1]=>1 [3,1,2]=>1 [3,2,1]=>1 [3,3]=>1 [4,1,1]=>1 [4,2]=>1 [5,1]=>1 [6]=>1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The dominant dimension of the corresponding Comp-Nakayama algebra.
Created
Jul 30, 2018 at 21:01 by Rene Marczinzik
Updated
Jul 30, 2018 at 21:01 by Rene Marczinzik