Identifier
- St001237: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[1,0]=>2
[1,0,1,0]=>3
[1,1,0,0]=>3
[1,0,1,0,1,0]=>4
[1,0,1,1,0,0]=>4
[1,1,0,0,1,0]=>3
[1,1,0,1,0,0]=>4
[1,1,1,0,0,0]=>4
[1,0,1,0,1,0,1,0]=>5
[1,0,1,0,1,1,0,0]=>5
[1,0,1,1,0,0,1,0]=>4
[1,0,1,1,0,1,0,0]=>5
[1,0,1,1,1,0,0,0]=>5
[1,1,0,0,1,0,1,0]=>4
[1,1,0,0,1,1,0,0]=>4
[1,1,0,1,0,0,1,0]=>4
[1,1,0,1,0,1,0,0]=>5
[1,1,0,1,1,0,0,0]=>5
[1,1,1,0,0,0,1,0]=>4
[1,1,1,0,0,1,0,0]=>4
[1,1,1,0,1,0,0,0]=>5
[1,1,1,1,0,0,0,0]=>5
[1,0,1,0,1,0,1,0,1,0]=>6
[1,0,1,0,1,0,1,1,0,0]=>6
[1,0,1,0,1,1,0,0,1,0]=>5
[1,0,1,0,1,1,0,1,0,0]=>6
[1,0,1,0,1,1,1,0,0,0]=>6
[1,0,1,1,0,0,1,0,1,0]=>5
[1,0,1,1,0,0,1,1,0,0]=>5
[1,0,1,1,0,1,0,0,1,0]=>5
[1,0,1,1,0,1,0,1,0,0]=>6
[1,0,1,1,0,1,1,0,0,0]=>6
[1,0,1,1,1,0,0,0,1,0]=>5
[1,0,1,1,1,0,0,1,0,0]=>5
[1,0,1,1,1,0,1,0,0,0]=>6
[1,0,1,1,1,1,0,0,0,0]=>6
[1,1,0,0,1,0,1,0,1,0]=>5
[1,1,0,0,1,0,1,1,0,0]=>5
[1,1,0,0,1,1,0,0,1,0]=>4
[1,1,0,0,1,1,0,1,0,0]=>5
[1,1,0,0,1,1,1,0,0,0]=>5
[1,1,0,1,0,0,1,0,1,0]=>5
[1,1,0,1,0,0,1,1,0,0]=>5
[1,1,0,1,0,1,0,0,1,0]=>5
[1,1,0,1,0,1,0,1,0,0]=>6
[1,1,0,1,0,1,1,0,0,0]=>6
[1,1,0,1,1,0,0,0,1,0]=>5
[1,1,0,1,1,0,0,1,0,0]=>5
[1,1,0,1,1,0,1,0,0,0]=>6
[1,1,0,1,1,1,0,0,0,0]=>6
[1,1,1,0,0,0,1,0,1,0]=>5
[1,1,1,0,0,0,1,1,0,0]=>5
[1,1,1,0,0,1,0,0,1,0]=>4
[1,1,1,0,0,1,0,1,0,0]=>5
[1,1,1,0,0,1,1,0,0,0]=>5
[1,1,1,0,1,0,0,0,1,0]=>5
[1,1,1,0,1,0,0,1,0,0]=>5
[1,1,1,0,1,0,1,0,0,0]=>6
[1,1,1,0,1,1,0,0,0,0]=>6
[1,1,1,1,0,0,0,0,1,0]=>5
[1,1,1,1,0,0,0,1,0,0]=>5
[1,1,1,1,0,0,1,0,0,0]=>5
[1,1,1,1,0,1,0,0,0,0]=>6
[1,1,1,1,1,0,0,0,0,0]=>6
[1,0,1,0,1,0,1,0,1,0,1,0]=>7
[1,0,1,0,1,0,1,0,1,1,0,0]=>7
[1,0,1,0,1,0,1,1,0,0,1,0]=>6
[1,0,1,0,1,0,1,1,0,1,0,0]=>7
[1,0,1,0,1,0,1,1,1,0,0,0]=>7
[1,0,1,0,1,1,0,0,1,0,1,0]=>6
[1,0,1,0,1,1,0,0,1,1,0,0]=>6
[1,0,1,0,1,1,0,1,0,0,1,0]=>6
[1,0,1,0,1,1,0,1,0,1,0,0]=>7
[1,0,1,0,1,1,0,1,1,0,0,0]=>7
[1,0,1,0,1,1,1,0,0,0,1,0]=>6
[1,0,1,0,1,1,1,0,0,1,0,0]=>6
[1,0,1,0,1,1,1,0,1,0,0,0]=>7
[1,0,1,0,1,1,1,1,0,0,0,0]=>7
[1,0,1,1,0,0,1,0,1,0,1,0]=>6
[1,0,1,1,0,0,1,0,1,1,0,0]=>6
[1,0,1,1,0,0,1,1,0,0,1,0]=>5
[1,0,1,1,0,0,1,1,0,1,0,0]=>6
[1,0,1,1,0,0,1,1,1,0,0,0]=>6
[1,0,1,1,0,1,0,0,1,0,1,0]=>6
[1,0,1,1,0,1,0,0,1,1,0,0]=>6
[1,0,1,1,0,1,0,1,0,0,1,0]=>6
[1,0,1,1,0,1,0,1,0,1,0,0]=>7
[1,0,1,1,0,1,0,1,1,0,0,0]=>7
[1,0,1,1,0,1,1,0,0,0,1,0]=>6
[1,0,1,1,0,1,1,0,0,1,0,0]=>6
[1,0,1,1,0,1,1,0,1,0,0,0]=>7
[1,0,1,1,0,1,1,1,0,0,0,0]=>7
[1,0,1,1,1,0,0,0,1,0,1,0]=>6
[1,0,1,1,1,0,0,0,1,1,0,0]=>6
[1,0,1,1,1,0,0,1,0,0,1,0]=>5
[1,0,1,1,1,0,0,1,0,1,0,0]=>6
[1,0,1,1,1,0,0,1,1,0,0,0]=>6
[1,0,1,1,1,0,1,0,0,0,1,0]=>6
[1,0,1,1,1,0,1,0,0,1,0,0]=>6
[1,0,1,1,1,0,1,0,1,0,0,0]=>7
[1,0,1,1,1,0,1,1,0,0,0,0]=>7
[1,0,1,1,1,1,0,0,0,0,1,0]=>6
[1,0,1,1,1,1,0,0,0,1,0,0]=>6
[1,0,1,1,1,1,0,0,1,0,0,0]=>6
[1,0,1,1,1,1,0,1,0,0,0,0]=>7
[1,0,1,1,1,1,1,0,0,0,0,0]=>7
[1,1,0,0,1,0,1,0,1,0,1,0]=>6
[1,1,0,0,1,0,1,0,1,1,0,0]=>6
[1,1,0,0,1,0,1,1,0,0,1,0]=>5
[1,1,0,0,1,0,1,1,0,1,0,0]=>6
[1,1,0,0,1,0,1,1,1,0,0,0]=>6
[1,1,0,0,1,1,0,0,1,0,1,0]=>5
[1,1,0,0,1,1,0,0,1,1,0,0]=>5
[1,1,0,0,1,1,0,1,0,0,1,0]=>5
[1,1,0,0,1,1,0,1,0,1,0,0]=>6
[1,1,0,0,1,1,0,1,1,0,0,0]=>6
[1,1,0,0,1,1,1,0,0,0,1,0]=>5
[1,1,0,0,1,1,1,0,0,1,0,0]=>5
[1,1,0,0,1,1,1,0,1,0,0,0]=>6
[1,1,0,0,1,1,1,1,0,0,0,0]=>6
[1,1,0,1,0,0,1,0,1,0,1,0]=>6
[1,1,0,1,0,0,1,0,1,1,0,0]=>6
[1,1,0,1,0,0,1,1,0,0,1,0]=>5
[1,1,0,1,0,0,1,1,0,1,0,0]=>6
[1,1,0,1,0,0,1,1,1,0,0,0]=>6
[1,1,0,1,0,1,0,0,1,0,1,0]=>6
[1,1,0,1,0,1,0,0,1,1,0,0]=>6
[1,1,0,1,0,1,0,1,0,0,1,0]=>6
[1,1,0,1,0,1,0,1,0,1,0,0]=>7
[1,1,0,1,0,1,0,1,1,0,0,0]=>7
[1,1,0,1,0,1,1,0,0,0,1,0]=>6
[1,1,0,1,0,1,1,0,0,1,0,0]=>6
[1,1,0,1,0,1,1,0,1,0,0,0]=>7
[1,1,0,1,0,1,1,1,0,0,0,0]=>7
[1,1,0,1,1,0,0,0,1,0,1,0]=>6
[1,1,0,1,1,0,0,0,1,1,0,0]=>6
[1,1,0,1,1,0,0,1,0,0,1,0]=>5
[1,1,0,1,1,0,0,1,0,1,0,0]=>6
[1,1,0,1,1,0,0,1,1,0,0,0]=>6
[1,1,0,1,1,0,1,0,0,0,1,0]=>6
[1,1,0,1,1,0,1,0,0,1,0,0]=>6
[1,1,0,1,1,0,1,0,1,0,0,0]=>7
[1,1,0,1,1,0,1,1,0,0,0,0]=>7
[1,1,0,1,1,1,0,0,0,0,1,0]=>6
[1,1,0,1,1,1,0,0,0,1,0,0]=>6
[1,1,0,1,1,1,0,0,1,0,0,0]=>6
[1,1,0,1,1,1,0,1,0,0,0,0]=>7
[1,1,0,1,1,1,1,0,0,0,0,0]=>7
[1,1,1,0,0,0,1,0,1,0,1,0]=>6
[1,1,1,0,0,0,1,0,1,1,0,0]=>6
[1,1,1,0,0,0,1,1,0,0,1,0]=>5
[1,1,1,0,0,0,1,1,0,1,0,0]=>6
[1,1,1,0,0,0,1,1,1,0,0,0]=>6
[1,1,1,0,0,1,0,0,1,0,1,0]=>5
[1,1,1,0,0,1,0,0,1,1,0,0]=>5
[1,1,1,0,0,1,0,1,0,0,1,0]=>5
[1,1,1,0,0,1,0,1,0,1,0,0]=>6
[1,1,1,0,0,1,0,1,1,0,0,0]=>6
[1,1,1,0,0,1,1,0,0,0,1,0]=>5
[1,1,1,0,0,1,1,0,0,1,0,0]=>5
[1,1,1,0,0,1,1,0,1,0,0,0]=>6
[1,1,1,0,0,1,1,1,0,0,0,0]=>6
[1,1,1,0,1,0,0,0,1,0,1,0]=>6
[1,1,1,0,1,0,0,0,1,1,0,0]=>6
[1,1,1,0,1,0,0,1,0,0,1,0]=>5
[1,1,1,0,1,0,0,1,0,1,0,0]=>6
[1,1,1,0,1,0,0,1,1,0,0,0]=>6
[1,1,1,0,1,0,1,0,0,0,1,0]=>6
[1,1,1,0,1,0,1,0,0,1,0,0]=>6
[1,1,1,0,1,0,1,0,1,0,0,0]=>7
[1,1,1,0,1,0,1,1,0,0,0,0]=>7
[1,1,1,0,1,1,0,0,0,0,1,0]=>6
[1,1,1,0,1,1,0,0,0,1,0,0]=>6
[1,1,1,0,1,1,0,0,1,0,0,0]=>6
[1,1,1,0,1,1,0,1,0,0,0,0]=>7
[1,1,1,0,1,1,1,0,0,0,0,0]=>7
[1,1,1,1,0,0,0,0,1,0,1,0]=>6
[1,1,1,1,0,0,0,0,1,1,0,0]=>6
[1,1,1,1,0,0,0,1,0,0,1,0]=>5
[1,1,1,1,0,0,0,1,0,1,0,0]=>6
[1,1,1,1,0,0,0,1,1,0,0,0]=>6
[1,1,1,1,0,0,1,0,0,0,1,0]=>5
[1,1,1,1,0,0,1,0,0,1,0,0]=>5
[1,1,1,1,0,0,1,0,1,0,0,0]=>6
[1,1,1,1,0,0,1,1,0,0,0,0]=>6
[1,1,1,1,0,1,0,0,0,0,1,0]=>6
[1,1,1,1,0,1,0,0,0,1,0,0]=>6
[1,1,1,1,0,1,0,0,1,0,0,0]=>6
[1,1,1,1,0,1,0,1,0,0,0,0]=>7
[1,1,1,1,0,1,1,0,0,0,0,0]=>7
[1,1,1,1,1,0,0,0,0,0,1,0]=>6
[1,1,1,1,1,0,0,0,0,1,0,0]=>6
[1,1,1,1,1,0,0,0,1,0,0,0]=>6
[1,1,1,1,1,0,0,1,0,0,0,0]=>6
[1,1,1,1,1,0,1,0,0,0,0,0]=>7
[1,1,1,1,1,1,0,0,0,0,0,0]=>7
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of simple modules with injective dimension at most one or dominant dimension at least one.
Code
DeclareOperation("siminjdomdim1", [IsList]); InstallMethod(siminjdomdim1, "for a representation of a quiver", [IsList],0,function(L) local A,RegA,J,simA,U,projA,UU,n; A:=L[1]; U:=SimpleModules(A); UU:=Filtered(U,x->InjDimensionOfModule(x,30)<=1 or DominantDimensionOfModule(x,30)>=1); return(Size(UU)); end );
Created
Jul 28, 2018 at 16:48 by Rene Marczinzik
Updated
Jul 28, 2018 at 16:48 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!