Identifier
- St001241: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[1,0]=>1
[1,0,1,0]=>1
[1,1,0,0]=>2
[1,0,1,0,1,0]=>0
[1,0,1,1,0,0]=>2
[1,1,0,0,1,0]=>2
[1,1,0,1,0,0]=>1
[1,1,1,0,0,0]=>3
[1,0,1,0,1,0,1,0]=>0
[1,0,1,0,1,1,0,0]=>1
[1,0,1,1,0,0,1,0]=>2
[1,0,1,1,0,1,0,0]=>0
[1,0,1,1,1,0,0,0]=>3
[1,1,0,0,1,0,1,0]=>1
[1,1,0,0,1,1,0,0]=>3
[1,1,0,1,0,0,1,0]=>0
[1,1,0,1,0,1,0,0]=>0
[1,1,0,1,1,0,0,0]=>2
[1,1,1,0,0,0,1,0]=>3
[1,1,1,0,0,1,0,0]=>2
[1,1,1,0,1,0,0,0]=>1
[1,1,1,1,0,0,0,0]=>4
[1,0,1,0,1,0,1,0,1,0]=>0
[1,0,1,0,1,0,1,1,0,0]=>1
[1,0,1,0,1,1,0,0,1,0]=>1
[1,0,1,0,1,1,0,1,0,0]=>0
[1,0,1,0,1,1,1,0,0,0]=>2
[1,0,1,1,0,0,1,0,1,0]=>1
[1,0,1,1,0,0,1,1,0,0]=>3
[1,0,1,1,0,1,0,0,1,0]=>0
[1,0,1,1,0,1,0,1,0,0]=>0
[1,0,1,1,0,1,1,0,0,0]=>1
[1,0,1,1,1,0,0,0,1,0]=>3
[1,0,1,1,1,0,0,1,0,0]=>2
[1,0,1,1,1,0,1,0,0,0]=>0
[1,0,1,1,1,1,0,0,0,0]=>4
[1,1,0,0,1,0,1,0,1,0]=>1
[1,1,0,0,1,0,1,1,0,0]=>2
[1,1,0,0,1,1,0,0,1,0]=>3
[1,1,0,0,1,1,0,1,0,0]=>1
[1,1,0,0,1,1,1,0,0,0]=>4
[1,1,0,1,0,0,1,0,1,0]=>0
[1,1,0,1,0,0,1,1,0,0]=>1
[1,1,0,1,0,1,0,0,1,0]=>0
[1,1,0,1,0,1,0,1,0,0]=>0
[1,1,0,1,0,1,1,0,0,0]=>1
[1,1,0,1,1,0,0,0,1,0]=>2
[1,1,0,1,1,0,0,1,0,0]=>0
[1,1,0,1,1,0,1,0,0,0]=>0
[1,1,0,1,1,1,0,0,0,0]=>3
[1,1,1,0,0,0,1,0,1,0]=>2
[1,1,1,0,0,0,1,1,0,0]=>4
[1,1,1,0,0,1,0,0,1,0]=>1
[1,1,1,0,0,1,0,1,0,0]=>1
[1,1,1,0,0,1,1,0,0,0]=>3
[1,1,1,0,1,0,0,0,1,0]=>0
[1,1,1,0,1,0,0,1,0,0]=>0
[1,1,1,0,1,0,1,0,0,0]=>0
[1,1,1,0,1,1,0,0,0,0]=>2
[1,1,1,1,0,0,0,0,1,0]=>4
[1,1,1,1,0,0,0,1,0,0]=>3
[1,1,1,1,0,0,1,0,0,0]=>2
[1,1,1,1,0,1,0,0,0,0]=>1
[1,1,1,1,1,0,0,0,0,0]=>5
[1,0,1,0,1,0,1,0,1,0,1,0]=>0
[1,0,1,0,1,0,1,0,1,1,0,0]=>1
[1,0,1,0,1,0,1,1,0,0,1,0]=>1
[1,0,1,0,1,0,1,1,0,1,0,0]=>0
[1,0,1,0,1,0,1,1,1,0,0,0]=>2
[1,0,1,0,1,1,0,0,1,0,1,0]=>0
[1,0,1,0,1,1,0,0,1,1,0,0]=>2
[1,0,1,0,1,1,0,1,0,0,1,0]=>0
[1,0,1,0,1,1,0,1,0,1,0,0]=>0
[1,0,1,0,1,1,0,1,1,0,0,0]=>1
[1,0,1,0,1,1,1,0,0,0,1,0]=>2
[1,0,1,0,1,1,1,0,0,1,0,0]=>1
[1,0,1,0,1,1,1,0,1,0,0,0]=>0
[1,0,1,0,1,1,1,1,0,0,0,0]=>3
[1,0,1,1,0,0,1,0,1,0,1,0]=>1
[1,0,1,1,0,0,1,0,1,1,0,0]=>2
[1,0,1,1,0,0,1,1,0,0,1,0]=>3
[1,0,1,1,0,0,1,1,0,1,0,0]=>1
[1,0,1,1,0,0,1,1,1,0,0,0]=>4
[1,0,1,1,0,1,0,0,1,0,1,0]=>0
[1,0,1,1,0,1,0,0,1,1,0,0]=>1
[1,0,1,1,0,1,0,1,0,0,1,0]=>0
[1,0,1,1,0,1,0,1,0,1,0,0]=>0
[1,0,1,1,0,1,0,1,1,0,0,0]=>1
[1,0,1,1,0,1,1,0,0,0,1,0]=>1
[1,0,1,1,0,1,1,0,0,1,0,0]=>0
[1,0,1,1,0,1,1,0,1,0,0,0]=>0
[1,0,1,1,0,1,1,1,0,0,0,0]=>2
[1,0,1,1,1,0,0,0,1,0,1,0]=>2
[1,0,1,1,1,0,0,0,1,1,0,0]=>4
[1,0,1,1,1,0,0,1,0,0,1,0]=>1
[1,0,1,1,1,0,0,1,0,1,0,0]=>1
[1,0,1,1,1,0,0,1,1,0,0,0]=>3
[1,0,1,1,1,0,1,0,0,0,1,0]=>0
[1,0,1,1,1,0,1,0,0,1,0,0]=>0
[1,0,1,1,1,0,1,0,1,0,0,0]=>0
[1,0,1,1,1,0,1,1,0,0,0,0]=>1
[1,0,1,1,1,1,0,0,0,0,1,0]=>4
[1,0,1,1,1,1,0,0,0,1,0,0]=>3
[1,0,1,1,1,1,0,0,1,0,0,0]=>2
[1,0,1,1,1,1,0,1,0,0,0,0]=>0
[1,0,1,1,1,1,1,0,0,0,0,0]=>5
[1,1,0,0,1,0,1,0,1,0,1,0]=>1
[1,1,0,0,1,0,1,0,1,1,0,0]=>2
[1,1,0,0,1,0,1,1,0,0,1,0]=>2
[1,1,0,0,1,0,1,1,0,1,0,0]=>1
[1,1,0,0,1,0,1,1,1,0,0,0]=>3
[1,1,0,0,1,1,0,0,1,0,1,0]=>2
[1,1,0,0,1,1,0,0,1,1,0,0]=>4
[1,1,0,0,1,1,0,1,0,0,1,0]=>1
[1,1,0,0,1,1,0,1,0,1,0,0]=>1
[1,1,0,0,1,1,0,1,1,0,0,0]=>2
[1,1,0,0,1,1,1,0,0,0,1,0]=>4
[1,1,0,0,1,1,1,0,0,1,0,0]=>3
[1,1,0,0,1,1,1,0,1,0,0,0]=>1
[1,1,0,0,1,1,1,1,0,0,0,0]=>5
[1,1,0,1,0,0,1,0,1,0,1,0]=>0
[1,1,0,1,0,0,1,0,1,1,0,0]=>1
[1,1,0,1,0,0,1,1,0,0,1,0]=>1
[1,1,0,1,0,0,1,1,0,1,0,0]=>0
[1,1,0,1,0,0,1,1,1,0,0,0]=>2
[1,1,0,1,0,1,0,0,1,0,1,0]=>0
[1,1,0,1,0,1,0,0,1,1,0,0]=>1
[1,1,0,1,0,1,0,1,0,0,1,0]=>0
[1,1,0,1,0,1,0,1,0,1,0,0]=>0
[1,1,0,1,0,1,0,1,1,0,0,0]=>1
[1,1,0,1,0,1,1,0,0,0,1,0]=>1
[1,1,0,1,0,1,1,0,0,1,0,0]=>0
[1,1,0,1,0,1,1,0,1,0,0,0]=>0
[1,1,0,1,0,1,1,1,0,0,0,0]=>2
[1,1,0,1,1,0,0,0,1,0,1,0]=>1
[1,1,0,1,1,0,0,0,1,1,0,0]=>3
[1,1,0,1,1,0,0,1,0,0,1,0]=>0
[1,1,0,1,1,0,0,1,0,1,0,0]=>0
[1,1,0,1,1,0,0,1,1,0,0,0]=>1
[1,1,0,1,1,0,1,0,0,0,1,0]=>0
[1,1,0,1,1,0,1,0,0,1,0,0]=>0
[1,1,0,1,1,0,1,0,1,0,0,0]=>0
[1,1,0,1,1,0,1,1,0,0,0,0]=>1
[1,1,0,1,1,1,0,0,0,0,1,0]=>3
[1,1,0,1,1,1,0,0,0,1,0,0]=>2
[1,1,0,1,1,1,0,0,1,0,0,0]=>0
[1,1,0,1,1,1,0,1,0,0,0,0]=>0
[1,1,0,1,1,1,1,0,0,0,0,0]=>4
[1,1,1,0,0,0,1,0,1,0,1,0]=>2
[1,1,1,0,0,0,1,0,1,1,0,0]=>3
[1,1,1,0,0,0,1,1,0,0,1,0]=>4
[1,1,1,0,0,0,1,1,0,1,0,0]=>2
[1,1,1,0,0,0,1,1,1,0,0,0]=>5
[1,1,1,0,0,1,0,0,1,0,1,0]=>1
[1,1,1,0,0,1,0,0,1,1,0,0]=>2
[1,1,1,0,0,1,0,1,0,0,1,0]=>1
[1,1,1,0,0,1,0,1,0,1,0,0]=>1
[1,1,1,0,0,1,0,1,1,0,0,0]=>2
[1,1,1,0,0,1,1,0,0,0,1,0]=>3
[1,1,1,0,0,1,1,0,0,1,0,0]=>1
[1,1,1,0,0,1,1,0,1,0,0,0]=>1
[1,1,1,0,0,1,1,1,0,0,0,0]=>4
[1,1,1,0,1,0,0,0,1,0,1,0]=>0
[1,1,1,0,1,0,0,0,1,1,0,0]=>1
[1,1,1,0,1,0,0,1,0,0,1,0]=>0
[1,1,1,0,1,0,0,1,0,1,0,0]=>0
[1,1,1,0,1,0,0,1,1,0,0,0]=>1
[1,1,1,0,1,0,1,0,0,0,1,0]=>0
[1,1,1,0,1,0,1,0,0,1,0,0]=>0
[1,1,1,0,1,0,1,0,1,0,0,0]=>0
[1,1,1,0,1,0,1,1,0,0,0,0]=>1
[1,1,1,0,1,1,0,0,0,0,1,0]=>2
[1,1,1,0,1,1,0,0,0,1,0,0]=>0
[1,1,1,0,1,1,0,0,1,0,0,0]=>0
[1,1,1,0,1,1,0,1,0,0,0,0]=>0
[1,1,1,0,1,1,1,0,0,0,0,0]=>3
[1,1,1,1,0,0,0,0,1,0,1,0]=>3
[1,1,1,1,0,0,0,0,1,1,0,0]=>5
[1,1,1,1,0,0,0,1,0,0,1,0]=>2
[1,1,1,1,0,0,0,1,0,1,0,0]=>2
[1,1,1,1,0,0,0,1,1,0,0,0]=>4
[1,1,1,1,0,0,1,0,0,0,1,0]=>1
[1,1,1,1,0,0,1,0,0,1,0,0]=>1
[1,1,1,1,0,0,1,0,1,0,0,0]=>1
[1,1,1,1,0,0,1,1,0,0,0,0]=>3
[1,1,1,1,0,1,0,0,0,0,1,0]=>0
[1,1,1,1,0,1,0,0,0,1,0,0]=>0
[1,1,1,1,0,1,0,0,1,0,0,0]=>0
[1,1,1,1,0,1,0,1,0,0,0,0]=>0
[1,1,1,1,0,1,1,0,0,0,0,0]=>2
[1,1,1,1,1,0,0,0,0,0,1,0]=>5
[1,1,1,1,1,0,0,0,0,1,0,0]=>4
[1,1,1,1,1,0,0,0,1,0,0,0]=>3
[1,1,1,1,1,0,0,1,0,0,0,0]=>2
[1,1,1,1,1,0,1,0,0,0,0,0]=>1
[1,1,1,1,1,1,0,0,0,0,0,0]=>6
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of non-zero radicals of the indecomposable projective modules that have injective dimension and projective dimension at most one.
Code
DeclareOperation("radprojinj", [IsList]); InstallMethod(radprojinj, "for a representation of a quiver", [IsList],0,function(L) local A,RegA,J,simA,U,projA,UU,n; A:=L[1]; projA:=IndecProjectiveModules(A); n:=Size(projA); RegA:=DirectSumOfQPAModules(projA); U:=[];for i in [1..n-1] do Append(U,[RadicalOfModule(projA[i])]);od; UU:=Filtered(U,x->InjDimensionOfModule(x,30)<=1 and ProjDimensionOfModule(x,30)<=1); return(Size(UU)); end );
Created
Jul 28, 2018 at 15:43 by Rene Marczinzik
Updated
Jul 28, 2018 at 15:43 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!