edit this statistic or download as text // json
Identifier
Values
=>
Cc0005;cc-rep
[1,0]=>1 [1,0,1,0]=>2 [1,1,0,0]=>3 [1,0,1,0,1,0]=>6 [1,0,1,1,0,0]=>9 [1,1,0,0,1,0]=>9 [1,1,0,1,0,0]=>13 [1,1,1,0,0,0]=>21 [1,0,1,0,1,0,1,0]=>24 [1,0,1,0,1,1,0,0]=>36 [1,0,1,1,0,0,1,0]=>36 [1,0,1,1,0,1,0,0]=>52 [1,0,1,1,1,0,0,0]=>84 [1,1,0,0,1,0,1,0]=>36 [1,1,0,0,1,1,0,0]=>54 [1,1,0,1,0,0,1,0]=>52 [1,1,0,1,0,1,0,0]=>75 [1,1,0,1,1,0,0,0]=>117 [1,1,1,0,0,0,1,0]=>84 [1,1,1,0,0,1,0,0]=>117 [1,1,1,0,1,0,0,0]=>183 [1,1,1,1,0,0,0,0]=>315 [1,0,1,0,1,0,1,0,1,0]=>120 [1,0,1,0,1,0,1,1,0,0]=>180 [1,0,1,0,1,1,0,0,1,0]=>180 [1,0,1,0,1,1,0,1,0,0]=>260 [1,0,1,0,1,1,1,0,0,0]=>420 [1,0,1,1,0,0,1,0,1,0]=>180 [1,0,1,1,0,0,1,1,0,0]=>270 [1,0,1,1,0,1,0,0,1,0]=>260 [1,0,1,1,0,1,0,1,0,0]=>375 [1,0,1,1,0,1,1,0,0,0]=>585 [1,0,1,1,1,0,0,0,1,0]=>420 [1,0,1,1,1,0,0,1,0,0]=>585 [1,0,1,1,1,0,1,0,0,0]=>915 [1,0,1,1,1,1,0,0,0,0]=>1575 [1,1,0,0,1,0,1,0,1,0]=>180 [1,1,0,0,1,0,1,1,0,0]=>270 [1,1,0,0,1,1,0,0,1,0]=>270 [1,1,0,0,1,1,0,1,0,0]=>390 [1,1,0,0,1,1,1,0,0,0]=>630 [1,1,0,1,0,0,1,0,1,0]=>260 [1,1,0,1,0,0,1,1,0,0]=>390 [1,1,0,1,0,1,0,0,1,0]=>375 [1,1,0,1,0,1,0,1,0,0]=>541 [1,1,0,1,0,1,1,0,0,0]=>843 [1,1,0,1,1,0,0,0,1,0]=>585 [1,1,0,1,1,0,0,1,0,0]=>813 [1,1,0,1,1,0,1,0,0,0]=>1269 [1,1,0,1,1,1,0,0,0,0]=>2121 [1,1,1,0,0,0,1,0,1,0]=>420 [1,1,1,0,0,0,1,1,0,0]=>630 [1,1,1,0,0,1,0,0,1,0]=>585 [1,1,1,0,0,1,0,1,0,0]=>843 [1,1,1,0,0,1,1,0,0,0]=>1269 [1,1,1,0,1,0,0,0,1,0]=>915 [1,1,1,0,1,0,0,1,0,0]=>1269 [1,1,1,0,1,0,1,0,0,0]=>1917 [1,1,1,0,1,1,0,0,0,0]=>3213 [1,1,1,1,0,0,0,0,1,0]=>1575 [1,1,1,1,0,0,0,1,0,0]=>2121 [1,1,1,1,0,0,1,0,0,0]=>3213 [1,1,1,1,0,1,0,0,0,0]=>5397 [1,1,1,1,1,0,0,0,0,0]=>9765
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The toal dimension of certain Sn modules determined by LLT polynomials associated with a Dyck path.
Given a Dyck path, there is an associated (directed) unit interval graph $\Gamma$.
Consider the expansion
$$G_\Gamma(x;q) = \sum_{\kappa: V(G) \to \mathbb{N}_+} x_\kappa q^{\mathrm{asc}(\kappa)}$$
using the notation by Alexandersson and Panova. The function $G_\Gamma(x;q)$
is a so called unicellular LLT polynomial, and a symmetric function.
Consider the Schur expansion
$$G_\Gamma(x;q+1) = \sum_{\lambda} c^\Gamma_\lambda(q) s_\lambda(x).$$
By a result by Haiman and Grojnowski, all $c^\Gamma_\lambda(q)$ have non-negative integer coefficients.
Thus, $G_\Gamma(x;q+1)$ is the Frobenius image of some (graded) $S_n$-module.
The total dimension of this $S_n$-module is
$$D_\Gamma = \sum_{\lambda} c^\Gamma_\lambda(1)f^\lambda$$
where $f^\lambda$ is the number of standard Young tableaux of shape $\lambda$.
This statistic is $D_\Gamma$.
References
[1] Alexandersson, P., Panova, G. LLT polynomials, chromatic quasisymmetric functions and graphs with cycles DOI:10.1016/j.disc.2018.09.001
Created
Sep 05, 2018 at 08:45 by Per Alexandersson
Updated
Sep 25, 2018 at 13:07 by Per Alexandersson