Identifier
- St001242: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[1,0]=>1
[1,0,1,0]=>2
[1,1,0,0]=>3
[1,0,1,0,1,0]=>6
[1,0,1,1,0,0]=>9
[1,1,0,0,1,0]=>9
[1,1,0,1,0,0]=>13
[1,1,1,0,0,0]=>21
[1,0,1,0,1,0,1,0]=>24
[1,0,1,0,1,1,0,0]=>36
[1,0,1,1,0,0,1,0]=>36
[1,0,1,1,0,1,0,0]=>52
[1,0,1,1,1,0,0,0]=>84
[1,1,0,0,1,0,1,0]=>36
[1,1,0,0,1,1,0,0]=>54
[1,1,0,1,0,0,1,0]=>52
[1,1,0,1,0,1,0,0]=>75
[1,1,0,1,1,0,0,0]=>117
[1,1,1,0,0,0,1,0]=>84
[1,1,1,0,0,1,0,0]=>117
[1,1,1,0,1,0,0,0]=>183
[1,1,1,1,0,0,0,0]=>315
[1,0,1,0,1,0,1,0,1,0]=>120
[1,0,1,0,1,0,1,1,0,0]=>180
[1,0,1,0,1,1,0,0,1,0]=>180
[1,0,1,0,1,1,0,1,0,0]=>260
[1,0,1,0,1,1,1,0,0,0]=>420
[1,0,1,1,0,0,1,0,1,0]=>180
[1,0,1,1,0,0,1,1,0,0]=>270
[1,0,1,1,0,1,0,0,1,0]=>260
[1,0,1,1,0,1,0,1,0,0]=>375
[1,0,1,1,0,1,1,0,0,0]=>585
[1,0,1,1,1,0,0,0,1,0]=>420
[1,0,1,1,1,0,0,1,0,0]=>585
[1,0,1,1,1,0,1,0,0,0]=>915
[1,0,1,1,1,1,0,0,0,0]=>1575
[1,1,0,0,1,0,1,0,1,0]=>180
[1,1,0,0,1,0,1,1,0,0]=>270
[1,1,0,0,1,1,0,0,1,0]=>270
[1,1,0,0,1,1,0,1,0,0]=>390
[1,1,0,0,1,1,1,0,0,0]=>630
[1,1,0,1,0,0,1,0,1,0]=>260
[1,1,0,1,0,0,1,1,0,0]=>390
[1,1,0,1,0,1,0,0,1,0]=>375
[1,1,0,1,0,1,0,1,0,0]=>541
[1,1,0,1,0,1,1,0,0,0]=>843
[1,1,0,1,1,0,0,0,1,0]=>585
[1,1,0,1,1,0,0,1,0,0]=>813
[1,1,0,1,1,0,1,0,0,0]=>1269
[1,1,0,1,1,1,0,0,0,0]=>2121
[1,1,1,0,0,0,1,0,1,0]=>420
[1,1,1,0,0,0,1,1,0,0]=>630
[1,1,1,0,0,1,0,0,1,0]=>585
[1,1,1,0,0,1,0,1,0,0]=>843
[1,1,1,0,0,1,1,0,0,0]=>1269
[1,1,1,0,1,0,0,0,1,0]=>915
[1,1,1,0,1,0,0,1,0,0]=>1269
[1,1,1,0,1,0,1,0,0,0]=>1917
[1,1,1,0,1,1,0,0,0,0]=>3213
[1,1,1,1,0,0,0,0,1,0]=>1575
[1,1,1,1,0,0,0,1,0,0]=>2121
[1,1,1,1,0,0,1,0,0,0]=>3213
[1,1,1,1,0,1,0,0,0,0]=>5397
[1,1,1,1,1,0,0,0,0,0]=>9765
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The toal dimension of certain Sn modules determined by LLT polynomials associated with a Dyck path.
Given a Dyck path, there is an associated (directed) unit interval graph $\Gamma$.
Consider the expansion
$$G_\Gamma(x;q) = \sum_{\kappa: V(G) \to \mathbb{N}_+} x_\kappa q^{\mathrm{asc}(\kappa)}$$
using the notation by Alexandersson and Panova. The function $G_\Gamma(x;q)$
is a so called unicellular LLT polynomial, and a symmetric function.
Consider the Schur expansion
$$G_\Gamma(x;q+1) = \sum_{\lambda} c^\Gamma_\lambda(q) s_\lambda(x).$$
By a result by Haiman and Grojnowski, all $c^\Gamma_\lambda(q)$ have non-negative integer coefficients.
Thus, $G_\Gamma(x;q+1)$ is the Frobenius image of some (graded) $S_n$-module.
The total dimension of this $S_n$-module is
$$D_\Gamma = \sum_{\lambda} c^\Gamma_\lambda(1)f^\lambda$$
where $f^\lambda$ is the number of standard Young tableaux of shape $\lambda$.
This statistic is $D_\Gamma$.
Given a Dyck path, there is an associated (directed) unit interval graph $\Gamma$.
Consider the expansion
$$G_\Gamma(x;q) = \sum_{\kappa: V(G) \to \mathbb{N}_+} x_\kappa q^{\mathrm{asc}(\kappa)}$$
using the notation by Alexandersson and Panova. The function $G_\Gamma(x;q)$
is a so called unicellular LLT polynomial, and a symmetric function.
Consider the Schur expansion
$$G_\Gamma(x;q+1) = \sum_{\lambda} c^\Gamma_\lambda(q) s_\lambda(x).$$
By a result by Haiman and Grojnowski, all $c^\Gamma_\lambda(q)$ have non-negative integer coefficients.
Thus, $G_\Gamma(x;q+1)$ is the Frobenius image of some (graded) $S_n$-module.
The total dimension of this $S_n$-module is
$$D_\Gamma = \sum_{\lambda} c^\Gamma_\lambda(1)f^\lambda$$
where $f^\lambda$ is the number of standard Young tableaux of shape $\lambda$.
This statistic is $D_\Gamma$.
References
[1] Alexandersson, P., Panova, G. LLT polynomials, chromatic quasisymmetric functions and graphs with cycles DOI:10.1016/j.disc.2018.09.001
Created
Sep 05, 2018 at 08:45 by Per Alexandersson
Updated
Sep 25, 2018 at 13:07 by Per Alexandersson
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!