Identifier
- St001244: Dyck paths ⟶ ℤ (values match St001188The number of simple modules $S$ with grade $\inf \{ i \geq 0 | Ext^i(S,A) \neq 0 \}$ at least two in the Nakayama algebra $A$ corresponding to the Dyck path.)
Values
=>
Cc0005;cc-rep
[1,0]=>0
[1,0,1,0]=>1
[1,1,0,0]=>0
[1,0,1,0,1,0]=>1
[1,0,1,1,0,0]=>1
[1,1,0,0,1,0]=>1
[1,1,0,1,0,0]=>1
[1,1,1,0,0,0]=>0
[1,0,1,0,1,0,1,0]=>1
[1,0,1,0,1,1,0,0]=>1
[1,0,1,1,0,0,1,0]=>2
[1,0,1,1,0,1,0,0]=>1
[1,0,1,1,1,0,0,0]=>1
[1,1,0,0,1,0,1,0]=>1
[1,1,0,0,1,1,0,0]=>1
[1,1,0,1,0,0,1,0]=>1
[1,1,0,1,0,1,0,0]=>2
[1,1,0,1,1,0,0,0]=>1
[1,1,1,0,0,0,1,0]=>1
[1,1,1,0,0,1,0,0]=>1
[1,1,1,0,1,0,0,0]=>1
[1,1,1,1,0,0,0,0]=>0
[1,0,1,0,1,0,1,0,1,0]=>1
[1,0,1,0,1,0,1,1,0,0]=>1
[1,0,1,0,1,1,0,0,1,0]=>2
[1,0,1,0,1,1,0,1,0,0]=>1
[1,0,1,0,1,1,1,0,0,0]=>1
[1,0,1,1,0,0,1,0,1,0]=>2
[1,0,1,1,0,0,1,1,0,0]=>2
[1,0,1,1,0,1,0,0,1,0]=>1
[1,0,1,1,0,1,0,1,0,0]=>2
[1,0,1,1,0,1,1,0,0,0]=>1
[1,0,1,1,1,0,0,0,1,0]=>2
[1,0,1,1,1,0,0,1,0,0]=>2
[1,0,1,1,1,0,1,0,0,0]=>1
[1,0,1,1,1,1,0,0,0,0]=>1
[1,1,0,0,1,0,1,0,1,0]=>1
[1,1,0,0,1,0,1,1,0,0]=>1
[1,1,0,0,1,1,0,0,1,0]=>2
[1,1,0,0,1,1,0,1,0,0]=>1
[1,1,0,0,1,1,1,0,0,0]=>1
[1,1,0,1,0,0,1,0,1,0]=>1
[1,1,0,1,0,0,1,1,0,0]=>1
[1,1,0,1,0,1,0,0,1,0]=>2
[1,1,0,1,0,1,0,1,0,0]=>2
[1,1,0,1,0,1,1,0,0,0]=>2
[1,1,0,1,1,0,0,0,1,0]=>2
[1,1,0,1,1,0,0,1,0,0]=>1
[1,1,0,1,1,0,1,0,0,0]=>2
[1,1,0,1,1,1,0,0,0,0]=>1
[1,1,1,0,0,0,1,0,1,0]=>1
[1,1,1,0,0,0,1,1,0,0]=>1
[1,1,1,0,0,1,0,0,1,0]=>1
[1,1,1,0,0,1,0,1,0,0]=>2
[1,1,1,0,0,1,1,0,0,0]=>1
[1,1,1,0,1,0,0,0,1,0]=>1
[1,1,1,0,1,0,0,1,0,0]=>2
[1,1,1,0,1,0,1,0,0,0]=>2
[1,1,1,0,1,1,0,0,0,0]=>1
[1,1,1,1,0,0,0,0,1,0]=>1
[1,1,1,1,0,0,0,1,0,0]=>1
[1,1,1,1,0,0,1,0,0,0]=>1
[1,1,1,1,0,1,0,0,0,0]=>1
[1,1,1,1,1,0,0,0,0,0]=>0
[1,0,1,0,1,0,1,0,1,0,1,0]=>1
[1,0,1,0,1,0,1,0,1,1,0,0]=>1
[1,0,1,0,1,0,1,1,0,0,1,0]=>2
[1,0,1,0,1,0,1,1,0,1,0,0]=>1
[1,0,1,0,1,0,1,1,1,0,0,0]=>1
[1,0,1,0,1,1,0,0,1,0,1,0]=>2
[1,0,1,0,1,1,0,0,1,1,0,0]=>2
[1,0,1,0,1,1,0,1,0,0,1,0]=>1
[1,0,1,0,1,1,0,1,0,1,0,0]=>2
[1,0,1,0,1,1,0,1,1,0,0,0]=>1
[1,0,1,0,1,1,1,0,0,0,1,0]=>2
[1,0,1,0,1,1,1,0,0,1,0,0]=>2
[1,0,1,0,1,1,1,0,1,0,0,0]=>1
[1,0,1,0,1,1,1,1,0,0,0,0]=>1
[1,0,1,1,0,0,1,0,1,0,1,0]=>2
[1,0,1,1,0,0,1,0,1,1,0,0]=>2
[1,0,1,1,0,0,1,1,0,0,1,0]=>3
[1,0,1,1,0,0,1,1,0,1,0,0]=>2
[1,0,1,1,0,0,1,1,1,0,0,0]=>2
[1,0,1,1,0,1,0,0,1,0,1,0]=>1
[1,0,1,1,0,1,0,0,1,1,0,0]=>1
[1,0,1,1,0,1,0,1,0,0,1,0]=>2
[1,0,1,1,0,1,0,1,0,1,0,0]=>2
[1,0,1,1,0,1,0,1,1,0,0,0]=>2
[1,0,1,1,0,1,1,0,0,0,1,0]=>2
[1,0,1,1,0,1,1,0,0,1,0,0]=>1
[1,0,1,1,0,1,1,0,1,0,0,0]=>2
[1,0,1,1,0,1,1,1,0,0,0,0]=>1
[1,0,1,1,1,0,0,0,1,0,1,0]=>2
[1,0,1,1,1,0,0,0,1,1,0,0]=>2
[1,0,1,1,1,0,0,1,0,0,1,0]=>2
[1,0,1,1,1,0,0,1,0,1,0,0]=>3
[1,0,1,1,1,0,0,1,1,0,0,0]=>2
[1,0,1,1,1,0,1,0,0,0,1,0]=>1
[1,0,1,1,1,0,1,0,0,1,0,0]=>2
[1,0,1,1,1,0,1,0,1,0,0,0]=>2
[1,0,1,1,1,0,1,1,0,0,0,0]=>1
[1,0,1,1,1,1,0,0,0,0,1,0]=>2
[1,0,1,1,1,1,0,0,0,1,0,0]=>2
[1,0,1,1,1,1,0,0,1,0,0,0]=>2
[1,0,1,1,1,1,0,1,0,0,0,0]=>1
[1,0,1,1,1,1,1,0,0,0,0,0]=>1
[1,1,0,0,1,0,1,0,1,0,1,0]=>1
[1,1,0,0,1,0,1,0,1,1,0,0]=>1
[1,1,0,0,1,0,1,1,0,0,1,0]=>2
[1,1,0,0,1,0,1,1,0,1,0,0]=>1
[1,1,0,0,1,0,1,1,1,0,0,0]=>1
[1,1,0,0,1,1,0,0,1,0,1,0]=>2
[1,1,0,0,1,1,0,0,1,1,0,0]=>2
[1,1,0,0,1,1,0,1,0,0,1,0]=>1
[1,1,0,0,1,1,0,1,0,1,0,0]=>2
[1,1,0,0,1,1,0,1,1,0,0,0]=>1
[1,1,0,0,1,1,1,0,0,0,1,0]=>2
[1,1,0,0,1,1,1,0,0,1,0,0]=>2
[1,1,0,0,1,1,1,0,1,0,0,0]=>1
[1,1,0,0,1,1,1,1,0,0,0,0]=>1
[1,1,0,1,0,0,1,0,1,0,1,0]=>1
[1,1,0,1,0,0,1,0,1,1,0,0]=>1
[1,1,0,1,0,0,1,1,0,0,1,0]=>2
[1,1,0,1,0,0,1,1,0,1,0,0]=>1
[1,1,0,1,0,0,1,1,1,0,0,0]=>1
[1,1,0,1,0,1,0,0,1,0,1,0]=>2
[1,1,0,1,0,1,0,0,1,1,0,0]=>2
[1,1,0,1,0,1,0,1,0,0,1,0]=>2
[1,1,0,1,0,1,0,1,0,1,0,0]=>2
[1,1,0,1,0,1,0,1,1,0,0,0]=>2
[1,1,0,1,0,1,1,0,0,0,1,0]=>3
[1,1,0,1,0,1,1,0,0,1,0,0]=>2
[1,1,0,1,0,1,1,0,1,0,0,0]=>2
[1,1,0,1,0,1,1,1,0,0,0,0]=>2
[1,1,0,1,1,0,0,0,1,0,1,0]=>2
[1,1,0,1,1,0,0,0,1,1,0,0]=>2
[1,1,0,1,1,0,0,1,0,0,1,0]=>1
[1,1,0,1,1,0,0,1,0,1,0,0]=>2
[1,1,0,1,1,0,0,1,1,0,0,0]=>1
[1,1,0,1,1,0,1,0,0,0,1,0]=>2
[1,1,0,1,1,0,1,0,0,1,0,0]=>3
[1,1,0,1,1,0,1,0,1,0,0,0]=>2
[1,1,0,1,1,0,1,1,0,0,0,0]=>2
[1,1,0,1,1,1,0,0,0,0,1,0]=>2
[1,1,0,1,1,1,0,0,0,1,0,0]=>2
[1,1,0,1,1,1,0,0,1,0,0,0]=>1
[1,1,0,1,1,1,0,1,0,0,0,0]=>2
[1,1,0,1,1,1,1,0,0,0,0,0]=>1
[1,1,1,0,0,0,1,0,1,0,1,0]=>1
[1,1,1,0,0,0,1,0,1,1,0,0]=>1
[1,1,1,0,0,0,1,1,0,0,1,0]=>2
[1,1,1,0,0,0,1,1,0,1,0,0]=>1
[1,1,1,0,0,0,1,1,1,0,0,0]=>1
[1,1,1,0,0,1,0,0,1,0,1,0]=>1
[1,1,1,0,0,1,0,0,1,1,0,0]=>1
[1,1,1,0,0,1,0,1,0,0,1,0]=>2
[1,1,1,0,0,1,0,1,0,1,0,0]=>2
[1,1,1,0,0,1,0,1,1,0,0,0]=>2
[1,1,1,0,0,1,1,0,0,0,1,0]=>2
[1,1,1,0,0,1,1,0,0,1,0,0]=>1
[1,1,1,0,0,1,1,0,1,0,0,0]=>2
[1,1,1,0,0,1,1,1,0,0,0,0]=>1
[1,1,1,0,1,0,0,0,1,0,1,0]=>1
[1,1,1,0,1,0,0,0,1,1,0,0]=>1
[1,1,1,0,1,0,0,1,0,0,1,0]=>2
[1,1,1,0,1,0,0,1,0,1,0,0]=>2
[1,1,1,0,1,0,0,1,1,0,0,0]=>2
[1,1,1,0,1,0,1,0,0,0,1,0]=>2
[1,1,1,0,1,0,1,0,0,1,0,0]=>2
[1,1,1,0,1,0,1,0,1,0,0,0]=>3
[1,1,1,0,1,0,1,1,0,0,0,0]=>2
[1,1,1,0,1,1,0,0,0,0,1,0]=>2
[1,1,1,0,1,1,0,0,0,1,0,0]=>1
[1,1,1,0,1,1,0,0,1,0,0,0]=>2
[1,1,1,0,1,1,0,1,0,0,0,0]=>2
[1,1,1,0,1,1,1,0,0,0,0,0]=>1
[1,1,1,1,0,0,0,0,1,0,1,0]=>1
[1,1,1,1,0,0,0,0,1,1,0,0]=>1
[1,1,1,1,0,0,0,1,0,0,1,0]=>1
[1,1,1,1,0,0,0,1,0,1,0,0]=>2
[1,1,1,1,0,0,0,1,1,0,0,0]=>1
[1,1,1,1,0,0,1,0,0,0,1,0]=>1
[1,1,1,1,0,0,1,0,0,1,0,0]=>2
[1,1,1,1,0,0,1,0,1,0,0,0]=>2
[1,1,1,1,0,0,1,1,0,0,0,0]=>1
[1,1,1,1,0,1,0,0,0,0,1,0]=>1
[1,1,1,1,0,1,0,0,0,1,0,0]=>2
[1,1,1,1,0,1,0,0,1,0,0,0]=>2
[1,1,1,1,0,1,0,1,0,0,0,0]=>2
[1,1,1,1,0,1,1,0,0,0,0,0]=>1
[1,1,1,1,1,0,0,0,0,0,1,0]=>1
[1,1,1,1,1,0,0,0,0,1,0,0]=>1
[1,1,1,1,1,0,0,0,1,0,0,0]=>1
[1,1,1,1,1,0,0,1,0,0,0,0]=>1
[1,1,1,1,1,0,1,0,0,0,0,0]=>1
[1,1,1,1,1,1,0,0,0,0,0,0]=>0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path.
For the projective dimension see St001007Number of simple modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. and for 1-regularity see St001126Number of simple module that are 1-regular in the corresponding Nakayama algebra.. After applying the inverse zeta map Mp00032inverse zeta map, this statistic matches the number of rises of length at least 2 St000659The number of rises of length at least 2 of a Dyck path..
For the projective dimension see St001007Number of simple modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. and for 1-regularity see St001126Number of simple module that are 1-regular in the corresponding Nakayama algebra.. After applying the inverse zeta map Mp00032inverse zeta map, this statistic matches the number of rises of length at least 2 St000659The number of rises of length at least 2 of a Dyck path..
Code
def statistic(D): c = [ i+2 for i in reversed(D.to_area_sequence()) ] + [1] d = [1] + [ i+2 for i in D.reverse().to_area_sequence() ] return sum(1 for i in range(len(c)-1) if c[i]-c[i+1] == 1 and d[i+1]-d[i] != 1 ) #CodeLanguage: GAP DeclareOperation("has1regularcondition",[IsList]); InstallMethod(has1regularcondition, "for a representation of a quiver", [IsList],0,function(LIST) local M, n, f, N, i, h,A,g,r,L,LL,subsets1,subsets2,W,simA,G1,G2,G3,g1,g2,g3,WU,O,OF,RegA; A:=LIST[1]; M:=LIST[2]; RegA:=DirectSumOfQPAModules(IndecProjectiveModules(A)); g1:=ProjDimensionOfModule(M,30)-1; g2:=Size(HomOverAlgebra(M,RegA)); g3:=Size(ExtOverAlgebra(M,RegA)[2])-1; return([g1,g2,g3]); end); # has 1-redular condition iff output is [0,0,0]. DeclareOperation("numberofsim1ausreg",[IsList]); InstallMethod(numberofsim1ausreg, "for a representation of a quiver", [IsList],0,function(LIST) local M, n, f, N, i, h,A,g,r,L,LL,subsets1,subsets2,W,simA,G1,G2,G3,g1,g2,g3,WU,O,OF,RegA; A:=LIST[1]; simA:=Filtered(SimpleModules(A),x->ProjDimensionOfModule(x,1)<=1); WU:=Filtered(simA,x->has1regularcondition([A,x])=[0,0,0]); return(Size(WU)); end); DeclareOperation("allsimplesprojdim1are1reg",[IsList]); InstallMethod(allsimplesprojdim1are1reg, "for a representation of a quiver", [IsList],0,function(LIST) local M, n, f, N, i, h,A,g,r,L,LL,subsets1,subsets2,W,simA,G1,G2,G3,g1,g2,g3,WU,O,OF,RegA,UU,UU2; A:=LIST[1]; UU:=numberofsim1ausreg([A]); UU2:=Filtered(SimpleModules(A),x->ProjDimensionOfModule(x,1)=1); return(Size(UU2)-UU); end); DeclareOperation("numberofsim1ausregnot",[IsList]); InstallMethod(numberofsim1ausregnot, "for a representation of a quiver", [IsList],0,function(LIST) local M, n, f, N, i, h,A,g,r,L,LL,subsets1,subsets2,W,simA,G1,G2,G3,g1,g2,g3,WU,O,OF,RegA,simA2; A:=LIST[1]; simA2:=Filtered(SimpleModules(A),x->ProjDimensionOfModule(x,1)=1); WU:=Filtered(simA2,x->has1regularcondition([A,x])=[0,0,0]); return(Size(simA2)-Size(WU)); end);
Created
Aug 08, 2018 at 21:27 by Rene Marczinzik
Updated
Sep 05, 2018 at 10:32 by Christian Stump
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!