Identifier
- St001254: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[1,0]=>1
[1,0,1,0]=>2
[1,1,0,0]=>3
[1,0,1,0,1,0]=>3
[1,0,1,1,0,0]=>4
[1,1,0,0,1,0]=>4
[1,1,0,1,0,0]=>4
[1,1,1,0,0,0]=>6
[1,0,1,0,1,0,1,0]=>4
[1,0,1,0,1,1,0,0]=>5
[1,0,1,1,0,0,1,0]=>5
[1,0,1,1,0,1,0,0]=>5
[1,0,1,1,1,0,0,0]=>7
[1,1,0,0,1,0,1,0]=>5
[1,1,0,0,1,1,0,0]=>6
[1,1,0,1,0,0,1,0]=>5
[1,1,0,1,0,1,0,0]=>5
[1,1,0,1,1,0,0,0]=>6
[1,1,1,0,0,0,1,0]=>7
[1,1,1,0,0,1,0,0]=>7
[1,1,1,0,1,0,0,0]=>7
[1,1,1,1,0,0,0,0]=>10
[1,0,1,0,1,0,1,0,1,0]=>5
[1,0,1,0,1,0,1,1,0,0]=>6
[1,0,1,0,1,1,0,0,1,0]=>6
[1,0,1,0,1,1,0,1,0,0]=>6
[1,0,1,0,1,1,1,0,0,0]=>8
[1,0,1,1,0,0,1,0,1,0]=>6
[1,0,1,1,0,0,1,1,0,0]=>7
[1,0,1,1,0,1,0,0,1,0]=>6
[1,0,1,1,0,1,0,1,0,0]=>6
[1,0,1,1,0,1,1,0,0,0]=>7
[1,0,1,1,1,0,0,0,1,0]=>8
[1,0,1,1,1,0,0,1,0,0]=>8
[1,0,1,1,1,0,1,0,0,0]=>8
[1,0,1,1,1,1,0,0,0,0]=>11
[1,1,0,0,1,0,1,0,1,0]=>6
[1,1,0,0,1,0,1,1,0,0]=>7
[1,1,0,0,1,1,0,0,1,0]=>7
[1,1,0,0,1,1,0,1,0,0]=>7
[1,1,0,0,1,1,1,0,0,0]=>9
[1,1,0,1,0,0,1,0,1,0]=>6
[1,1,0,1,0,0,1,1,0,0]=>7
[1,1,0,1,0,1,0,0,1,0]=>6
[1,1,0,1,0,1,0,1,0,0]=>6
[1,1,0,1,0,1,1,0,0,0]=>7
[1,1,0,1,1,0,0,0,1,0]=>7
[1,1,0,1,1,0,0,1,0,0]=>7
[1,1,0,1,1,0,1,0,0,0]=>7
[1,1,0,1,1,1,0,0,0,0]=>9
[1,1,1,0,0,0,1,0,1,0]=>8
[1,1,1,0,0,0,1,1,0,0]=>9
[1,1,1,0,0,1,0,0,1,0]=>8
[1,1,1,0,0,1,0,1,0,0]=>8
[1,1,1,0,0,1,1,0,0,0]=>9
[1,1,1,0,1,0,0,0,1,0]=>8
[1,1,1,0,1,0,0,1,0,0]=>8
[1,1,1,0,1,0,1,0,0,0]=>8
[1,1,1,0,1,1,0,0,0,0]=>9
[1,1,1,1,0,0,0,0,1,0]=>11
[1,1,1,1,0,0,0,1,0,0]=>11
[1,1,1,1,0,0,1,0,0,0]=>11
[1,1,1,1,0,1,0,0,0,0]=>11
[1,1,1,1,1,0,0,0,0,0]=>15
[1,0,1,0,1,0,1,0,1,0,1,0]=>6
[1,0,1,0,1,0,1,0,1,1,0,0]=>7
[1,0,1,0,1,0,1,1,0,0,1,0]=>7
[1,0,1,0,1,0,1,1,0,1,0,0]=>7
[1,0,1,0,1,0,1,1,1,0,0,0]=>9
[1,0,1,0,1,1,0,0,1,0,1,0]=>7
[1,0,1,0,1,1,0,0,1,1,0,0]=>8
[1,0,1,0,1,1,0,1,0,0,1,0]=>7
[1,0,1,0,1,1,0,1,0,1,0,0]=>7
[1,0,1,0,1,1,0,1,1,0,0,0]=>8
[1,0,1,0,1,1,1,0,0,0,1,0]=>9
[1,0,1,0,1,1,1,0,0,1,0,0]=>9
[1,0,1,0,1,1,1,0,1,0,0,0]=>9
[1,0,1,0,1,1,1,1,0,0,0,0]=>12
[1,0,1,1,0,0,1,0,1,0,1,0]=>7
[1,0,1,1,0,0,1,0,1,1,0,0]=>8
[1,0,1,1,0,0,1,1,0,0,1,0]=>8
[1,0,1,1,0,0,1,1,0,1,0,0]=>8
[1,0,1,1,0,0,1,1,1,0,0,0]=>10
[1,0,1,1,0,1,0,0,1,0,1,0]=>7
[1,0,1,1,0,1,0,0,1,1,0,0]=>8
[1,0,1,1,0,1,0,1,0,0,1,0]=>7
[1,0,1,1,0,1,0,1,0,1,0,0]=>7
[1,0,1,1,0,1,0,1,1,0,0,0]=>8
[1,0,1,1,0,1,1,0,0,0,1,0]=>8
[1,0,1,1,0,1,1,0,0,1,0,0]=>8
[1,0,1,1,0,1,1,0,1,0,0,0]=>8
[1,0,1,1,0,1,1,1,0,0,0,0]=>10
[1,0,1,1,1,0,0,0,1,0,1,0]=>9
[1,0,1,1,1,0,0,0,1,1,0,0]=>10
[1,0,1,1,1,0,0,1,0,0,1,0]=>9
[1,0,1,1,1,0,0,1,0,1,0,0]=>9
[1,0,1,1,1,0,0,1,1,0,0,0]=>10
[1,0,1,1,1,0,1,0,0,0,1,0]=>9
[1,0,1,1,1,0,1,0,0,1,0,0]=>9
[1,0,1,1,1,0,1,0,1,0,0,0]=>9
[1,0,1,1,1,0,1,1,0,0,0,0]=>10
[1,0,1,1,1,1,0,0,0,0,1,0]=>12
[1,0,1,1,1,1,0,0,0,1,0,0]=>12
[1,0,1,1,1,1,0,0,1,0,0,0]=>12
[1,0,1,1,1,1,0,1,0,0,0,0]=>12
[1,0,1,1,1,1,1,0,0,0,0,0]=>16
[1,1,0,0,1,0,1,0,1,0,1,0]=>7
[1,1,0,0,1,0,1,0,1,1,0,0]=>8
[1,1,0,0,1,0,1,1,0,0,1,0]=>8
[1,1,0,0,1,0,1,1,0,1,0,0]=>8
[1,1,0,0,1,0,1,1,1,0,0,0]=>10
[1,1,0,0,1,1,0,0,1,0,1,0]=>8
[1,1,0,0,1,1,0,0,1,1,0,0]=>9
[1,1,0,0,1,1,0,1,0,0,1,0]=>8
[1,1,0,0,1,1,0,1,0,1,0,0]=>8
[1,1,0,0,1,1,0,1,1,0,0,0]=>9
[1,1,0,0,1,1,1,0,0,0,1,0]=>10
[1,1,0,0,1,1,1,0,0,1,0,0]=>10
[1,1,0,0,1,1,1,0,1,0,0,0]=>10
[1,1,0,0,1,1,1,1,0,0,0,0]=>13
[1,1,0,1,0,0,1,0,1,0,1,0]=>7
[1,1,0,1,0,0,1,0,1,1,0,0]=>8
[1,1,0,1,0,0,1,1,0,0,1,0]=>8
[1,1,0,1,0,0,1,1,0,1,0,0]=>8
[1,1,0,1,0,0,1,1,1,0,0,0]=>10
[1,1,0,1,0,1,0,0,1,0,1,0]=>7
[1,1,0,1,0,1,0,0,1,1,0,0]=>8
[1,1,0,1,0,1,0,1,0,0,1,0]=>7
[1,1,0,1,0,1,0,1,0,1,0,0]=>7
[1,1,0,1,0,1,0,1,1,0,0,0]=>8
[1,1,0,1,0,1,1,0,0,0,1,0]=>8
[1,1,0,1,0,1,1,0,0,1,0,0]=>8
[1,1,0,1,0,1,1,0,1,0,0,0]=>8
[1,1,0,1,0,1,1,1,0,0,0,0]=>10
[1,1,0,1,1,0,0,0,1,0,1,0]=>8
[1,1,0,1,1,0,0,0,1,1,0,0]=>9
[1,1,0,1,1,0,0,1,0,0,1,0]=>8
[1,1,0,1,1,0,0,1,0,1,0,0]=>8
[1,1,0,1,1,0,0,1,1,0,0,0]=>9
[1,1,0,1,1,0,1,0,0,0,1,0]=>8
[1,1,0,1,1,0,1,0,0,1,0,0]=>8
[1,1,0,1,1,0,1,0,1,0,0,0]=>8
[1,1,0,1,1,0,1,1,0,0,0,0]=>9
[1,1,0,1,1,1,0,0,0,0,1,0]=>10
[1,1,0,1,1,1,0,0,0,1,0,0]=>10
[1,1,0,1,1,1,0,0,1,0,0,0]=>10
[1,1,0,1,1,1,0,1,0,0,0,0]=>10
[1,1,0,1,1,1,1,0,0,0,0,0]=>13
[1,1,1,0,0,0,1,0,1,0,1,0]=>9
[1,1,1,0,0,0,1,0,1,1,0,0]=>10
[1,1,1,0,0,0,1,1,0,0,1,0]=>10
[1,1,1,0,0,0,1,1,0,1,0,0]=>10
[1,1,1,0,0,0,1,1,1,0,0,0]=>12
[1,1,1,0,0,1,0,0,1,0,1,0]=>9
[1,1,1,0,0,1,0,0,1,1,0,0]=>10
[1,1,1,0,0,1,0,1,0,0,1,0]=>9
[1,1,1,0,0,1,0,1,0,1,0,0]=>9
[1,1,1,0,0,1,0,1,1,0,0,0]=>10
[1,1,1,0,0,1,1,0,0,0,1,0]=>10
[1,1,1,0,0,1,1,0,0,1,0,0]=>10
[1,1,1,0,0,1,1,0,1,0,0,0]=>10
[1,1,1,0,0,1,1,1,0,0,0,0]=>12
[1,1,1,0,1,0,0,0,1,0,1,0]=>9
[1,1,1,0,1,0,0,0,1,1,0,0]=>10
[1,1,1,0,1,0,0,1,0,0,1,0]=>9
[1,1,1,0,1,0,0,1,0,1,0,0]=>9
[1,1,1,0,1,0,0,1,1,0,0,0]=>10
[1,1,1,0,1,0,1,0,0,0,1,0]=>9
[1,1,1,0,1,0,1,0,0,1,0,0]=>9
[1,1,1,0,1,0,1,0,1,0,0,0]=>9
[1,1,1,0,1,0,1,1,0,0,0,0]=>10
[1,1,1,0,1,1,0,0,0,0,1,0]=>10
[1,1,1,0,1,1,0,0,0,1,0,0]=>10
[1,1,1,0,1,1,0,0,1,0,0,0]=>10
[1,1,1,0,1,1,0,1,0,0,0,0]=>10
[1,1,1,0,1,1,1,0,0,0,0,0]=>12
[1,1,1,1,0,0,0,0,1,0,1,0]=>12
[1,1,1,1,0,0,0,0,1,1,0,0]=>13
[1,1,1,1,0,0,0,1,0,0,1,0]=>12
[1,1,1,1,0,0,0,1,0,1,0,0]=>12
[1,1,1,1,0,0,0,1,1,0,0,0]=>13
[1,1,1,1,0,0,1,0,0,0,1,0]=>12
[1,1,1,1,0,0,1,0,0,1,0,0]=>12
[1,1,1,1,0,0,1,0,1,0,0,0]=>12
[1,1,1,1,0,0,1,1,0,0,0,0]=>13
[1,1,1,1,0,1,0,0,0,0,1,0]=>12
[1,1,1,1,0,1,0,0,0,1,0,0]=>12
[1,1,1,1,0,1,0,0,1,0,0,0]=>12
[1,1,1,1,0,1,0,1,0,0,0,0]=>12
[1,1,1,1,0,1,1,0,0,0,0,0]=>13
[1,1,1,1,1,0,0,0,0,0,1,0]=>16
[1,1,1,1,1,0,0,0,0,1,0,0]=>16
[1,1,1,1,1,0,0,0,1,0,0,0]=>16
[1,1,1,1,1,0,0,1,0,0,0,0]=>16
[1,1,1,1,1,0,1,0,0,0,0,0]=>16
[1,1,1,1,1,1,0,0,0,0,0,0]=>21
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The vector space dimension of the first extension-group between A/soc(A) and J when A is the corresponding Nakayama algebra with Jacobson radical J.
Code
DeclareOperation("Ext1socrad",[IsList]); InstallMethod(Ext1socrad, "for a representation of a quiver", [IsList],0,function(LIST) local A,RegA,CoRegA,R,U; A:=LIST[1]; RegA:=DirectSumOfQPAModules(IndecProjectiveModules(A)); R:=RadicalOfModule(RegA); U:=CoKernel(SocleOfModuleInclusion(RegA)); return(Size(ExtOverAlgebra(U,R)[2])); end);
Created
Sep 11, 2018 at 22:21 by Rene Marczinzik
Updated
Sep 11, 2018 at 22:21 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!