edit this statistic or download as text // json
Identifier
Values
=>
Cc0005;cc-rep
[1,0]=>1 [1,0,1,0]=>2 [1,1,0,0]=>3 [1,0,1,0,1,0]=>3 [1,0,1,1,0,0]=>4 [1,1,0,0,1,0]=>4 [1,1,0,1,0,0]=>4 [1,1,1,0,0,0]=>6 [1,0,1,0,1,0,1,0]=>4 [1,0,1,0,1,1,0,0]=>5 [1,0,1,1,0,0,1,0]=>5 [1,0,1,1,0,1,0,0]=>5 [1,0,1,1,1,0,0,0]=>7 [1,1,0,0,1,0,1,0]=>5 [1,1,0,0,1,1,0,0]=>6 [1,1,0,1,0,0,1,0]=>5 [1,1,0,1,0,1,0,0]=>5 [1,1,0,1,1,0,0,0]=>6 [1,1,1,0,0,0,1,0]=>7 [1,1,1,0,0,1,0,0]=>7 [1,1,1,0,1,0,0,0]=>7 [1,1,1,1,0,0,0,0]=>10 [1,0,1,0,1,0,1,0,1,0]=>5 [1,0,1,0,1,0,1,1,0,0]=>6 [1,0,1,0,1,1,0,0,1,0]=>6 [1,0,1,0,1,1,0,1,0,0]=>6 [1,0,1,0,1,1,1,0,0,0]=>8 [1,0,1,1,0,0,1,0,1,0]=>6 [1,0,1,1,0,0,1,1,0,0]=>7 [1,0,1,1,0,1,0,0,1,0]=>6 [1,0,1,1,0,1,0,1,0,0]=>6 [1,0,1,1,0,1,1,0,0,0]=>7 [1,0,1,1,1,0,0,0,1,0]=>8 [1,0,1,1,1,0,0,1,0,0]=>8 [1,0,1,1,1,0,1,0,0,0]=>8 [1,0,1,1,1,1,0,0,0,0]=>11 [1,1,0,0,1,0,1,0,1,0]=>6 [1,1,0,0,1,0,1,1,0,0]=>7 [1,1,0,0,1,1,0,0,1,0]=>7 [1,1,0,0,1,1,0,1,0,0]=>7 [1,1,0,0,1,1,1,0,0,0]=>9 [1,1,0,1,0,0,1,0,1,0]=>6 [1,1,0,1,0,0,1,1,0,0]=>7 [1,1,0,1,0,1,0,0,1,0]=>6 [1,1,0,1,0,1,0,1,0,0]=>6 [1,1,0,1,0,1,1,0,0,0]=>7 [1,1,0,1,1,0,0,0,1,0]=>7 [1,1,0,1,1,0,0,1,0,0]=>7 [1,1,0,1,1,0,1,0,0,0]=>7 [1,1,0,1,1,1,0,0,0,0]=>9 [1,1,1,0,0,0,1,0,1,0]=>8 [1,1,1,0,0,0,1,1,0,0]=>9 [1,1,1,0,0,1,0,0,1,0]=>8 [1,1,1,0,0,1,0,1,0,0]=>8 [1,1,1,0,0,1,1,0,0,0]=>9 [1,1,1,0,1,0,0,0,1,0]=>8 [1,1,1,0,1,0,0,1,0,0]=>8 [1,1,1,0,1,0,1,0,0,0]=>8 [1,1,1,0,1,1,0,0,0,0]=>9 [1,1,1,1,0,0,0,0,1,0]=>11 [1,1,1,1,0,0,0,1,0,0]=>11 [1,1,1,1,0,0,1,0,0,0]=>11 [1,1,1,1,0,1,0,0,0,0]=>11 [1,1,1,1,1,0,0,0,0,0]=>15 [1,0,1,0,1,0,1,0,1,0,1,0]=>6 [1,0,1,0,1,0,1,0,1,1,0,0]=>7 [1,0,1,0,1,0,1,1,0,0,1,0]=>7 [1,0,1,0,1,0,1,1,0,1,0,0]=>7 [1,0,1,0,1,0,1,1,1,0,0,0]=>9 [1,0,1,0,1,1,0,0,1,0,1,0]=>7 [1,0,1,0,1,1,0,0,1,1,0,0]=>8 [1,0,1,0,1,1,0,1,0,0,1,0]=>7 [1,0,1,0,1,1,0,1,0,1,0,0]=>7 [1,0,1,0,1,1,0,1,1,0,0,0]=>8 [1,0,1,0,1,1,1,0,0,0,1,0]=>9 [1,0,1,0,1,1,1,0,0,1,0,0]=>9 [1,0,1,0,1,1,1,0,1,0,0,0]=>9 [1,0,1,0,1,1,1,1,0,0,0,0]=>12 [1,0,1,1,0,0,1,0,1,0,1,0]=>7 [1,0,1,1,0,0,1,0,1,1,0,0]=>8 [1,0,1,1,0,0,1,1,0,0,1,0]=>8 [1,0,1,1,0,0,1,1,0,1,0,0]=>8 [1,0,1,1,0,0,1,1,1,0,0,0]=>10 [1,0,1,1,0,1,0,0,1,0,1,0]=>7 [1,0,1,1,0,1,0,0,1,1,0,0]=>8 [1,0,1,1,0,1,0,1,0,0,1,0]=>7 [1,0,1,1,0,1,0,1,0,1,0,0]=>7 [1,0,1,1,0,1,0,1,1,0,0,0]=>8 [1,0,1,1,0,1,1,0,0,0,1,0]=>8 [1,0,1,1,0,1,1,0,0,1,0,0]=>8 [1,0,1,1,0,1,1,0,1,0,0,0]=>8 [1,0,1,1,0,1,1,1,0,0,0,0]=>10 [1,0,1,1,1,0,0,0,1,0,1,0]=>9 [1,0,1,1,1,0,0,0,1,1,0,0]=>10 [1,0,1,1,1,0,0,1,0,0,1,0]=>9 [1,0,1,1,1,0,0,1,0,1,0,0]=>9 [1,0,1,1,1,0,0,1,1,0,0,0]=>10 [1,0,1,1,1,0,1,0,0,0,1,0]=>9 [1,0,1,1,1,0,1,0,0,1,0,0]=>9 [1,0,1,1,1,0,1,0,1,0,0,0]=>9 [1,0,1,1,1,0,1,1,0,0,0,0]=>10 [1,0,1,1,1,1,0,0,0,0,1,0]=>12 [1,0,1,1,1,1,0,0,0,1,0,0]=>12 [1,0,1,1,1,1,0,0,1,0,0,0]=>12 [1,0,1,1,1,1,0,1,0,0,0,0]=>12 [1,0,1,1,1,1,1,0,0,0,0,0]=>16 [1,1,0,0,1,0,1,0,1,0,1,0]=>7 [1,1,0,0,1,0,1,0,1,1,0,0]=>8 [1,1,0,0,1,0,1,1,0,0,1,0]=>8 [1,1,0,0,1,0,1,1,0,1,0,0]=>8 [1,1,0,0,1,0,1,1,1,0,0,0]=>10 [1,1,0,0,1,1,0,0,1,0,1,0]=>8 [1,1,0,0,1,1,0,0,1,1,0,0]=>9 [1,1,0,0,1,1,0,1,0,0,1,0]=>8 [1,1,0,0,1,1,0,1,0,1,0,0]=>8 [1,1,0,0,1,1,0,1,1,0,0,0]=>9 [1,1,0,0,1,1,1,0,0,0,1,0]=>10 [1,1,0,0,1,1,1,0,0,1,0,0]=>10 [1,1,0,0,1,1,1,0,1,0,0,0]=>10 [1,1,0,0,1,1,1,1,0,0,0,0]=>13 [1,1,0,1,0,0,1,0,1,0,1,0]=>7 [1,1,0,1,0,0,1,0,1,1,0,0]=>8 [1,1,0,1,0,0,1,1,0,0,1,0]=>8 [1,1,0,1,0,0,1,1,0,1,0,0]=>8 [1,1,0,1,0,0,1,1,1,0,0,0]=>10 [1,1,0,1,0,1,0,0,1,0,1,0]=>7 [1,1,0,1,0,1,0,0,1,1,0,0]=>8 [1,1,0,1,0,1,0,1,0,0,1,0]=>7 [1,1,0,1,0,1,0,1,0,1,0,0]=>7 [1,1,0,1,0,1,0,1,1,0,0,0]=>8 [1,1,0,1,0,1,1,0,0,0,1,0]=>8 [1,1,0,1,0,1,1,0,0,1,0,0]=>8 [1,1,0,1,0,1,1,0,1,0,0,0]=>8 [1,1,0,1,0,1,1,1,0,0,0,0]=>10 [1,1,0,1,1,0,0,0,1,0,1,0]=>8 [1,1,0,1,1,0,0,0,1,1,0,0]=>9 [1,1,0,1,1,0,0,1,0,0,1,0]=>8 [1,1,0,1,1,0,0,1,0,1,0,0]=>8 [1,1,0,1,1,0,0,1,1,0,0,0]=>9 [1,1,0,1,1,0,1,0,0,0,1,0]=>8 [1,1,0,1,1,0,1,0,0,1,0,0]=>8 [1,1,0,1,1,0,1,0,1,0,0,0]=>8 [1,1,0,1,1,0,1,1,0,0,0,0]=>9 [1,1,0,1,1,1,0,0,0,0,1,0]=>10 [1,1,0,1,1,1,0,0,0,1,0,0]=>10 [1,1,0,1,1,1,0,0,1,0,0,0]=>10 [1,1,0,1,1,1,0,1,0,0,0,0]=>10 [1,1,0,1,1,1,1,0,0,0,0,0]=>13 [1,1,1,0,0,0,1,0,1,0,1,0]=>9 [1,1,1,0,0,0,1,0,1,1,0,0]=>10 [1,1,1,0,0,0,1,1,0,0,1,0]=>10 [1,1,1,0,0,0,1,1,0,1,0,0]=>10 [1,1,1,0,0,0,1,1,1,0,0,0]=>12 [1,1,1,0,0,1,0,0,1,0,1,0]=>9 [1,1,1,0,0,1,0,0,1,1,0,0]=>10 [1,1,1,0,0,1,0,1,0,0,1,0]=>9 [1,1,1,0,0,1,0,1,0,1,0,0]=>9 [1,1,1,0,0,1,0,1,1,0,0,0]=>10 [1,1,1,0,0,1,1,0,0,0,1,0]=>10 [1,1,1,0,0,1,1,0,0,1,0,0]=>10 [1,1,1,0,0,1,1,0,1,0,0,0]=>10 [1,1,1,0,0,1,1,1,0,0,0,0]=>12 [1,1,1,0,1,0,0,0,1,0,1,0]=>9 [1,1,1,0,1,0,0,0,1,1,0,0]=>10 [1,1,1,0,1,0,0,1,0,0,1,0]=>9 [1,1,1,0,1,0,0,1,0,1,0,0]=>9 [1,1,1,0,1,0,0,1,1,0,0,0]=>10 [1,1,1,0,1,0,1,0,0,0,1,0]=>9 [1,1,1,0,1,0,1,0,0,1,0,0]=>9 [1,1,1,0,1,0,1,0,1,0,0,0]=>9 [1,1,1,0,1,0,1,1,0,0,0,0]=>10 [1,1,1,0,1,1,0,0,0,0,1,0]=>10 [1,1,1,0,1,1,0,0,0,1,0,0]=>10 [1,1,1,0,1,1,0,0,1,0,0,0]=>10 [1,1,1,0,1,1,0,1,0,0,0,0]=>10 [1,1,1,0,1,1,1,0,0,0,0,0]=>12 [1,1,1,1,0,0,0,0,1,0,1,0]=>12 [1,1,1,1,0,0,0,0,1,1,0,0]=>13 [1,1,1,1,0,0,0,1,0,0,1,0]=>12 [1,1,1,1,0,0,0,1,0,1,0,0]=>12 [1,1,1,1,0,0,0,1,1,0,0,0]=>13 [1,1,1,1,0,0,1,0,0,0,1,0]=>12 [1,1,1,1,0,0,1,0,0,1,0,0]=>12 [1,1,1,1,0,0,1,0,1,0,0,0]=>12 [1,1,1,1,0,0,1,1,0,0,0,0]=>13 [1,1,1,1,0,1,0,0,0,0,1,0]=>12 [1,1,1,1,0,1,0,0,0,1,0,0]=>12 [1,1,1,1,0,1,0,0,1,0,0,0]=>12 [1,1,1,1,0,1,0,1,0,0,0,0]=>12 [1,1,1,1,0,1,1,0,0,0,0,0]=>13 [1,1,1,1,1,0,0,0,0,0,1,0]=>16 [1,1,1,1,1,0,0,0,0,1,0,0]=>16 [1,1,1,1,1,0,0,0,1,0,0,0]=>16 [1,1,1,1,1,0,0,1,0,0,0,0]=>16 [1,1,1,1,1,0,1,0,0,0,0,0]=>16 [1,1,1,1,1,1,0,0,0,0,0,0]=>21
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The vector space dimension of the first extension-group between A/soc(A) and J when A is the corresponding Nakayama algebra with Jacobson radical J.
Code

DeclareOperation("Ext1socrad",[IsList]);

InstallMethod(Ext1socrad, "for a representation of a quiver", [IsList],0,function(LIST)

local A,RegA,CoRegA,R,U;

A:=LIST[1];
RegA:=DirectSumOfQPAModules(IndecProjectiveModules(A));
R:=RadicalOfModule(RegA);
U:=CoKernel(SocleOfModuleInclusion(RegA));
return(Size(ExtOverAlgebra(U,R)[2]));
end);

Created
Sep 11, 2018 at 22:21 by Rene Marczinzik
Updated
Sep 11, 2018 at 22:21 by Rene Marczinzik