edit this statistic or download as text // json
Identifier
Values
=>
Cc0005;cc-rep
[1,0]=>1 [1,0,1,0]=>3 [1,1,0,0]=>1 [1,0,1,0,1,0]=>4 [1,0,1,1,0,0]=>3 [1,1,0,0,1,0]=>3 [1,1,0,1,0,0]=>4 [1,1,1,0,0,0]=>1 [1,0,1,0,1,0,1,0]=>5 [1,0,1,0,1,1,0,0]=>4 [1,0,1,1,0,0,1,0]=>5 [1,0,1,1,0,1,0,0]=>5 [1,0,1,1,1,0,0,0]=>3 [1,1,0,0,1,0,1,0]=>4 [1,1,0,0,1,1,0,0]=>3 [1,1,0,1,0,0,1,0]=>5 [1,1,0,1,0,1,0,0]=>5 [1,1,0,1,1,0,0,0]=>4 [1,1,1,0,0,0,1,0]=>3 [1,1,1,0,0,1,0,0]=>4 [1,1,1,0,1,0,0,0]=>5 [1,1,1,1,0,0,0,0]=>1 [1,0,1,0,1,0,1,0,1,0]=>6 [1,0,1,0,1,0,1,1,0,0]=>5 [1,0,1,0,1,1,0,0,1,0]=>6 [1,0,1,0,1,1,0,1,0,0]=>6 [1,0,1,0,1,1,1,0,0,0]=>4 [1,0,1,1,0,0,1,0,1,0]=>6 [1,0,1,1,0,0,1,1,0,0]=>5 [1,0,1,1,0,1,0,0,1,0]=>6 [1,0,1,1,0,1,0,1,0,0]=>6 [1,0,1,1,0,1,1,0,0,0]=>5 [1,0,1,1,1,0,0,0,1,0]=>5 [1,0,1,1,1,0,0,1,0,0]=>6 [1,0,1,1,1,0,1,0,0,0]=>6 [1,0,1,1,1,1,0,0,0,0]=>3 [1,1,0,0,1,0,1,0,1,0]=>5 [1,1,0,0,1,0,1,1,0,0]=>4 [1,1,0,0,1,1,0,0,1,0]=>5 [1,1,0,0,1,1,0,1,0,0]=>5 [1,1,0,0,1,1,1,0,0,0]=>3 [1,1,0,1,0,0,1,0,1,0]=>6 [1,1,0,1,0,0,1,1,0,0]=>5 [1,1,0,1,0,1,0,0,1,0]=>6 [1,1,0,1,0,1,0,1,0,0]=>6 [1,1,0,1,0,1,1,0,0,0]=>5 [1,1,0,1,1,0,0,0,1,0]=>6 [1,1,0,1,1,0,0,1,0,0]=>6 [1,1,0,1,1,0,1,0,0,0]=>6 [1,1,0,1,1,1,0,0,0,0]=>4 [1,1,1,0,0,0,1,0,1,0]=>4 [1,1,1,0,0,0,1,1,0,0]=>3 [1,1,1,0,0,1,0,0,1,0]=>5 [1,1,1,0,0,1,0,1,0,0]=>5 [1,1,1,0,0,1,1,0,0,0]=>4 [1,1,1,0,1,0,0,0,1,0]=>6 [1,1,1,0,1,0,0,1,0,0]=>6 [1,1,1,0,1,0,1,0,0,0]=>6 [1,1,1,0,1,1,0,0,0,0]=>5 [1,1,1,1,0,0,0,0,1,0]=>3 [1,1,1,1,0,0,0,1,0,0]=>4 [1,1,1,1,0,0,1,0,0,0]=>5 [1,1,1,1,0,1,0,0,0,0]=>6 [1,1,1,1,1,0,0,0,0,0]=>1 [1,0,1,0,1,0,1,0,1,0,1,0]=>7 [1,0,1,0,1,0,1,0,1,1,0,0]=>6 [1,0,1,0,1,0,1,1,0,0,1,0]=>7 [1,0,1,0,1,0,1,1,0,1,0,0]=>7 [1,0,1,0,1,0,1,1,1,0,0,0]=>5 [1,0,1,0,1,1,0,0,1,0,1,0]=>7 [1,0,1,0,1,1,0,0,1,1,0,0]=>6 [1,0,1,0,1,1,0,1,0,0,1,0]=>7 [1,0,1,0,1,1,0,1,0,1,0,0]=>7 [1,0,1,0,1,1,0,1,1,0,0,0]=>6 [1,0,1,0,1,1,1,0,0,0,1,0]=>6 [1,0,1,0,1,1,1,0,0,1,0,0]=>7 [1,0,1,0,1,1,1,0,1,0,0,0]=>7 [1,0,1,0,1,1,1,1,0,0,0,0]=>4 [1,0,1,1,0,0,1,0,1,0,1,0]=>7 [1,0,1,1,0,0,1,0,1,1,0,0]=>6 [1,0,1,1,0,0,1,1,0,0,1,0]=>7 [1,0,1,1,0,0,1,1,0,1,0,0]=>7 [1,0,1,1,0,0,1,1,1,0,0,0]=>5 [1,0,1,1,0,1,0,0,1,0,1,0]=>7 [1,0,1,1,0,1,0,0,1,1,0,0]=>6 [1,0,1,1,0,1,0,1,0,0,1,0]=>7 [1,0,1,1,0,1,0,1,0,1,0,0]=>7 [1,0,1,1,0,1,0,1,1,0,0,0]=>6 [1,0,1,1,0,1,1,0,0,0,1,0]=>7 [1,0,1,1,0,1,1,0,0,1,0,0]=>7 [1,0,1,1,0,1,1,0,1,0,0,0]=>7 [1,0,1,1,0,1,1,1,0,0,0,0]=>5 [1,0,1,1,1,0,0,0,1,0,1,0]=>6 [1,0,1,1,1,0,0,0,1,1,0,0]=>5 [1,0,1,1,1,0,0,1,0,0,1,0]=>7 [1,0,1,1,1,0,0,1,0,1,0,0]=>7 [1,0,1,1,1,0,0,1,1,0,0,0]=>6 [1,0,1,1,1,0,1,0,0,0,1,0]=>7 [1,0,1,1,1,0,1,0,0,1,0,0]=>7 [1,0,1,1,1,0,1,0,1,0,0,0]=>7 [1,0,1,1,1,0,1,1,0,0,0,0]=>6 [1,0,1,1,1,1,0,0,0,0,1,0]=>5 [1,0,1,1,1,1,0,0,0,1,0,0]=>6 [1,0,1,1,1,1,0,0,1,0,0,0]=>7 [1,0,1,1,1,1,0,1,0,0,0,0]=>7 [1,0,1,1,1,1,1,0,0,0,0,0]=>3 [1,1,0,0,1,0,1,0,1,0,1,0]=>6 [1,1,0,0,1,0,1,0,1,1,0,0]=>5 [1,1,0,0,1,0,1,1,0,0,1,0]=>6 [1,1,0,0,1,0,1,1,0,1,0,0]=>6 [1,1,0,0,1,0,1,1,1,0,0,0]=>4 [1,1,0,0,1,1,0,0,1,0,1,0]=>6 [1,1,0,0,1,1,0,0,1,1,0,0]=>5 [1,1,0,0,1,1,0,1,0,0,1,0]=>6 [1,1,0,0,1,1,0,1,0,1,0,0]=>6 [1,1,0,0,1,1,0,1,1,0,0,0]=>5 [1,1,0,0,1,1,1,0,0,0,1,0]=>5 [1,1,0,0,1,1,1,0,0,1,0,0]=>6 [1,1,0,0,1,1,1,0,1,0,0,0]=>6 [1,1,0,0,1,1,1,1,0,0,0,0]=>3 [1,1,0,1,0,0,1,0,1,0,1,0]=>7 [1,1,0,1,0,0,1,0,1,1,0,0]=>6 [1,1,0,1,0,0,1,1,0,0,1,0]=>7 [1,1,0,1,0,0,1,1,0,1,0,0]=>7 [1,1,0,1,0,0,1,1,1,0,0,0]=>5 [1,1,0,1,0,1,0,0,1,0,1,0]=>7 [1,1,0,1,0,1,0,0,1,1,0,0]=>6 [1,1,0,1,0,1,0,1,0,0,1,0]=>7 [1,1,0,1,0,1,0,1,0,1,0,0]=>7 [1,1,0,1,0,1,0,1,1,0,0,0]=>6 [1,1,0,1,0,1,1,0,0,0,1,0]=>7 [1,1,0,1,0,1,1,0,0,1,0,0]=>7 [1,1,0,1,0,1,1,0,1,0,0,0]=>7 [1,1,0,1,0,1,1,1,0,0,0,0]=>5 [1,1,0,1,1,0,0,0,1,0,1,0]=>7 [1,1,0,1,1,0,0,0,1,1,0,0]=>6 [1,1,0,1,1,0,0,1,0,0,1,0]=>7 [1,1,0,1,1,0,0,1,0,1,0,0]=>7 [1,1,0,1,1,0,0,1,1,0,0,0]=>6 [1,1,0,1,1,0,1,0,0,0,1,0]=>7 [1,1,0,1,1,0,1,0,0,1,0,0]=>7 [1,1,0,1,1,0,1,0,1,0,0,0]=>7 [1,1,0,1,1,0,1,1,0,0,0,0]=>6 [1,1,0,1,1,1,0,0,0,0,1,0]=>6 [1,1,0,1,1,1,0,0,0,1,0,0]=>7 [1,1,0,1,1,1,0,0,1,0,0,0]=>7 [1,1,0,1,1,1,0,1,0,0,0,0]=>7 [1,1,0,1,1,1,1,0,0,0,0,0]=>4 [1,1,1,0,0,0,1,0,1,0,1,0]=>5 [1,1,1,0,0,0,1,0,1,1,0,0]=>4 [1,1,1,0,0,0,1,1,0,0,1,0]=>5 [1,1,1,0,0,0,1,1,0,1,0,0]=>5 [1,1,1,0,0,0,1,1,1,0,0,0]=>3 [1,1,1,0,0,1,0,0,1,0,1,0]=>6 [1,1,1,0,0,1,0,0,1,1,0,0]=>5 [1,1,1,0,0,1,0,1,0,0,1,0]=>6 [1,1,1,0,0,1,0,1,0,1,0,0]=>6 [1,1,1,0,0,1,0,1,1,0,0,0]=>5 [1,1,1,0,0,1,1,0,0,0,1,0]=>6 [1,1,1,0,0,1,1,0,0,1,0,0]=>6 [1,1,1,0,0,1,1,0,1,0,0,0]=>6 [1,1,1,0,0,1,1,1,0,0,0,0]=>4 [1,1,1,0,1,0,0,0,1,0,1,0]=>7 [1,1,1,0,1,0,0,0,1,1,0,0]=>6 [1,1,1,0,1,0,0,1,0,0,1,0]=>7 [1,1,1,0,1,0,0,1,0,1,0,0]=>7 [1,1,1,0,1,0,0,1,1,0,0,0]=>6 [1,1,1,0,1,0,1,0,0,0,1,0]=>7 [1,1,1,0,1,0,1,0,0,1,0,0]=>7 [1,1,1,0,1,0,1,0,1,0,0,0]=>7 [1,1,1,0,1,0,1,1,0,0,0,0]=>6 [1,1,1,0,1,1,0,0,0,0,1,0]=>7 [1,1,1,0,1,1,0,0,0,1,0,0]=>7 [1,1,1,0,1,1,0,0,1,0,0,0]=>7 [1,1,1,0,1,1,0,1,0,0,0,0]=>7 [1,1,1,0,1,1,1,0,0,0,0,0]=>5 [1,1,1,1,0,0,0,0,1,0,1,0]=>4 [1,1,1,1,0,0,0,0,1,1,0,0]=>3 [1,1,1,1,0,0,0,1,0,0,1,0]=>5 [1,1,1,1,0,0,0,1,0,1,0,0]=>5 [1,1,1,1,0,0,0,1,1,0,0,0]=>4 [1,1,1,1,0,0,1,0,0,0,1,0]=>6 [1,1,1,1,0,0,1,0,0,1,0,0]=>6 [1,1,1,1,0,0,1,0,1,0,0,0]=>6 [1,1,1,1,0,0,1,1,0,0,0,0]=>5 [1,1,1,1,0,1,0,0,0,0,1,0]=>7 [1,1,1,1,0,1,0,0,0,1,0,0]=>7 [1,1,1,1,0,1,0,0,1,0,0,0]=>7 [1,1,1,1,0,1,0,1,0,0,0,0]=>7 [1,1,1,1,0,1,1,0,0,0,0,0]=>6 [1,1,1,1,1,0,0,0,0,0,1,0]=>3 [1,1,1,1,1,0,0,0,0,1,0,0]=>4 [1,1,1,1,1,0,0,0,1,0,0,0]=>5 [1,1,1,1,1,0,0,1,0,0,0,0]=>6 [1,1,1,1,1,0,1,0,0,0,0,0]=>7 [1,1,1,1,1,1,0,0,0,0,0,0]=>1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The vector space dimension of the double dual of A/J when A is the corresponding Nakayama algebra with Jacobson radical J.
Code
DeclareOperation("largestdoubledualsimplesum",[IsList]);

InstallMethod(largestdoubledualsimplesum, "for a representation of a quiver", [IsList],0,function(LIST)

local A,simA,U,LL;

A:=LIST[1];
LL:=SimpleModules(A);
U:=[];for i in LL do Append(U,[Dimension(StarOfModule(StarOfModule(i)))]);od;
return(Sum(U));
end);


Created
Sep 11, 2018 at 12:38 by Rene Marczinzik
Updated
Sep 13, 2018 at 13:09 by Rene Marczinzik