Identifier
- St001258: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[1,0]=>1
[1,0,1,0]=>2
[1,1,0,0]=>2
[1,0,1,0,1,0]=>3
[1,0,1,1,0,0]=>3
[1,1,0,0,1,0]=>3
[1,1,0,1,0,0]=>2
[1,1,1,0,0,0]=>2
[1,0,1,0,1,0,1,0]=>4
[1,0,1,0,1,1,0,0]=>4
[1,0,1,1,0,0,1,0]=>4
[1,0,1,1,0,1,0,0]=>3
[1,0,1,1,1,0,0,0]=>3
[1,1,0,0,1,0,1,0]=>4
[1,1,0,0,1,1,0,0]=>3
[1,1,0,1,0,0,1,0]=>3
[1,1,0,1,0,1,0,0]=>3
[1,1,0,1,1,0,0,0]=>3
[1,1,1,0,0,0,1,0]=>3
[1,1,1,0,0,1,0,0]=>3
[1,1,1,0,1,0,0,0]=>2
[1,1,1,1,0,0,0,0]=>2
[1,0,1,0,1,0,1,0,1,0]=>5
[1,0,1,0,1,0,1,1,0,0]=>5
[1,0,1,0,1,1,0,0,1,0]=>5
[1,0,1,0,1,1,0,1,0,0]=>4
[1,0,1,0,1,1,1,0,0,0]=>4
[1,0,1,1,0,0,1,0,1,0]=>5
[1,0,1,1,0,0,1,1,0,0]=>4
[1,0,1,1,0,1,0,0,1,0]=>4
[1,0,1,1,0,1,0,1,0,0]=>4
[1,0,1,1,0,1,1,0,0,0]=>4
[1,0,1,1,1,0,0,0,1,0]=>4
[1,0,1,1,1,0,0,1,0,0]=>4
[1,0,1,1,1,0,1,0,0,0]=>3
[1,0,1,1,1,1,0,0,0,0]=>3
[1,1,0,0,1,0,1,0,1,0]=>5
[1,1,0,0,1,0,1,1,0,0]=>4
[1,1,0,0,1,1,0,0,1,0]=>4
[1,1,0,0,1,1,0,1,0,0]=>4
[1,1,0,0,1,1,1,0,0,0]=>3
[1,1,0,1,0,0,1,0,1,0]=>4
[1,1,0,1,0,0,1,1,0,0]=>4
[1,1,0,1,0,1,0,0,1,0]=>4
[1,1,0,1,0,1,0,1,0,0]=>4
[1,1,0,1,0,1,1,0,0,0]=>4
[1,1,0,1,1,0,0,0,1,0]=>4
[1,1,0,1,1,0,0,1,0,0]=>4
[1,1,0,1,1,0,1,0,0,0]=>3
[1,1,0,1,1,1,0,0,0,0]=>3
[1,1,1,0,0,0,1,0,1,0]=>4
[1,1,1,0,0,0,1,1,0,0]=>3
[1,1,1,0,0,1,0,0,1,0]=>4
[1,1,1,0,0,1,0,1,0,0]=>4
[1,1,1,0,0,1,1,0,0,0]=>3
[1,1,1,0,1,0,0,0,1,0]=>3
[1,1,1,0,1,0,0,1,0,0]=>3
[1,1,1,0,1,0,1,0,0,0]=>3
[1,1,1,0,1,1,0,0,0,0]=>3
[1,1,1,1,0,0,0,0,1,0]=>3
[1,1,1,1,0,0,0,1,0,0]=>3
[1,1,1,1,0,0,1,0,0,0]=>3
[1,1,1,1,0,1,0,0,0,0]=>2
[1,1,1,1,1,0,0,0,0,0]=>2
[1,0,1,0,1,0,1,0,1,0,1,0]=>6
[1,0,1,0,1,0,1,0,1,1,0,0]=>6
[1,0,1,0,1,0,1,1,0,0,1,0]=>6
[1,0,1,0,1,0,1,1,0,1,0,0]=>5
[1,0,1,0,1,0,1,1,1,0,0,0]=>5
[1,0,1,0,1,1,0,0,1,0,1,0]=>6
[1,0,1,0,1,1,0,0,1,1,0,0]=>5
[1,0,1,0,1,1,0,1,0,0,1,0]=>5
[1,0,1,0,1,1,0,1,0,1,0,0]=>5
[1,0,1,0,1,1,0,1,1,0,0,0]=>5
[1,0,1,0,1,1,1,0,0,0,1,0]=>5
[1,0,1,0,1,1,1,0,0,1,0,0]=>5
[1,0,1,0,1,1,1,0,1,0,0,0]=>4
[1,0,1,0,1,1,1,1,0,0,0,0]=>4
[1,0,1,1,0,0,1,0,1,0,1,0]=>6
[1,0,1,1,0,0,1,0,1,1,0,0]=>5
[1,0,1,1,0,0,1,1,0,0,1,0]=>4
[1,0,1,1,0,0,1,1,0,1,0,0]=>5
[1,0,1,1,0,0,1,1,1,0,0,0]=>4
[1,0,1,1,0,1,0,0,1,0,1,0]=>5
[1,0,1,1,0,1,0,0,1,1,0,0]=>5
[1,0,1,1,0,1,0,1,0,0,1,0]=>5
[1,0,1,1,0,1,0,1,0,1,0,0]=>5
[1,0,1,1,0,1,0,1,1,0,0,0]=>5
[1,0,1,1,0,1,1,0,0,0,1,0]=>5
[1,0,1,1,0,1,1,0,0,1,0,0]=>5
[1,0,1,1,0,1,1,0,1,0,0,0]=>4
[1,0,1,1,0,1,1,1,0,0,0,0]=>4
[1,0,1,1,1,0,0,0,1,0,1,0]=>5
[1,0,1,1,1,0,0,0,1,1,0,0]=>4
[1,0,1,1,1,0,0,1,0,0,1,0]=>5
[1,0,1,1,1,0,0,1,0,1,0,0]=>5
[1,0,1,1,1,0,0,1,1,0,0,0]=>4
[1,0,1,1,1,0,1,0,0,0,1,0]=>4
[1,0,1,1,1,0,1,0,0,1,0,0]=>4
[1,0,1,1,1,0,1,0,1,0,0,0]=>4
[1,0,1,1,1,0,1,1,0,0,0,0]=>4
[1,0,1,1,1,1,0,0,0,0,1,0]=>4
[1,0,1,1,1,1,0,0,0,1,0,0]=>4
[1,0,1,1,1,1,0,0,1,0,0,0]=>4
[1,0,1,1,1,1,0,1,0,0,0,0]=>3
[1,0,1,1,1,1,1,0,0,0,0,0]=>3
[1,1,0,0,1,0,1,0,1,0,1,0]=>6
[1,1,0,0,1,0,1,0,1,1,0,0]=>5
[1,1,0,0,1,0,1,1,0,0,1,0]=>5
[1,1,0,0,1,0,1,1,0,1,0,0]=>5
[1,1,0,0,1,0,1,1,1,0,0,0]=>4
[1,1,0,0,1,1,0,0,1,0,1,0]=>5
[1,1,0,0,1,1,0,0,1,1,0,0]=>4
[1,1,0,0,1,1,0,1,0,0,1,0]=>5
[1,1,0,0,1,1,0,1,0,1,0,0]=>5
[1,1,0,0,1,1,0,1,1,0,0,0]=>4
[1,1,0,0,1,1,1,0,0,0,1,0]=>4
[1,1,0,0,1,1,1,0,0,1,0,0]=>4
[1,1,0,0,1,1,1,0,1,0,0,0]=>4
[1,1,0,0,1,1,1,1,0,0,0,0]=>3
[1,1,0,1,0,0,1,0,1,0,1,0]=>5
[1,1,0,1,0,0,1,0,1,1,0,0]=>5
[1,1,0,1,0,0,1,1,0,0,1,0]=>5
[1,1,0,1,0,0,1,1,0,1,0,0]=>4
[1,1,0,1,0,0,1,1,1,0,0,0]=>4
[1,1,0,1,0,1,0,0,1,0,1,0]=>5
[1,1,0,1,0,1,0,0,1,1,0,0]=>5
[1,1,0,1,0,1,0,1,0,0,1,0]=>5
[1,1,0,1,0,1,0,1,0,1,0,0]=>4
[1,1,0,1,0,1,0,1,1,0,0,0]=>4
[1,1,0,1,0,1,1,0,0,0,1,0]=>5
[1,1,0,1,0,1,1,0,0,1,0,0]=>4
[1,1,0,1,0,1,1,0,1,0,0,0]=>4
[1,1,0,1,0,1,1,1,0,0,0,0]=>4
[1,1,0,1,1,0,0,0,1,0,1,0]=>5
[1,1,0,1,1,0,0,0,1,1,0,0]=>4
[1,1,0,1,1,0,0,1,0,0,1,0]=>5
[1,1,0,1,1,0,0,1,0,1,0,0]=>4
[1,1,0,1,1,0,0,1,1,0,0,0]=>4
[1,1,0,1,1,0,1,0,0,0,1,0]=>4
[1,1,0,1,1,0,1,0,0,1,0,0]=>4
[1,1,0,1,1,0,1,0,1,0,0,0]=>4
[1,1,0,1,1,0,1,1,0,0,0,0]=>4
[1,1,0,1,1,1,0,0,0,0,1,0]=>4
[1,1,0,1,1,1,0,0,0,1,0,0]=>4
[1,1,0,1,1,1,0,0,1,0,0,0]=>4
[1,1,0,1,1,1,0,1,0,0,0,0]=>3
[1,1,0,1,1,1,1,0,0,0,0,0]=>3
[1,1,1,0,0,0,1,0,1,0,1,0]=>5
[1,1,1,0,0,0,1,0,1,1,0,0]=>4
[1,1,1,0,0,0,1,1,0,0,1,0]=>4
[1,1,1,0,0,0,1,1,0,1,0,0]=>4
[1,1,1,0,0,0,1,1,1,0,0,0]=>3
[1,1,1,0,0,1,0,0,1,0,1,0]=>5
[1,1,1,0,0,1,0,0,1,1,0,0]=>4
[1,1,1,0,0,1,0,1,0,0,1,0]=>5
[1,1,1,0,0,1,0,1,0,1,0,0]=>4
[1,1,1,0,0,1,0,1,1,0,0,0]=>4
[1,1,1,0,0,1,1,0,0,0,1,0]=>4
[1,1,1,0,0,1,1,0,0,1,0,0]=>4
[1,1,1,0,0,1,1,0,1,0,0,0]=>4
[1,1,1,0,0,1,1,1,0,0,0,0]=>3
[1,1,1,0,1,0,0,0,1,0,1,0]=>4
[1,1,1,0,1,0,0,0,1,1,0,0]=>4
[1,1,1,0,1,0,0,1,0,0,1,0]=>4
[1,1,1,0,1,0,0,1,0,1,0,0]=>4
[1,1,1,0,1,0,0,1,1,0,0,0]=>4
[1,1,1,0,1,0,1,0,0,0,1,0]=>4
[1,1,1,0,1,0,1,0,0,1,0,0]=>4
[1,1,1,0,1,0,1,0,1,0,0,0]=>4
[1,1,1,0,1,0,1,1,0,0,0,0]=>4
[1,1,1,0,1,1,0,0,0,0,1,0]=>4
[1,1,1,0,1,1,0,0,0,1,0,0]=>4
[1,1,1,0,1,1,0,0,1,0,0,0]=>4
[1,1,1,0,1,1,0,1,0,0,0,0]=>3
[1,1,1,0,1,1,1,0,0,0,0,0]=>3
[1,1,1,1,0,0,0,0,1,0,1,0]=>4
[1,1,1,1,0,0,0,0,1,1,0,0]=>3
[1,1,1,1,0,0,0,1,0,0,1,0]=>4
[1,1,1,1,0,0,0,1,0,1,0,0]=>4
[1,1,1,1,0,0,0,1,1,0,0,0]=>3
[1,1,1,1,0,0,1,0,0,0,1,0]=>4
[1,1,1,1,0,0,1,0,0,1,0,0]=>4
[1,1,1,1,0,0,1,0,1,0,0,0]=>4
[1,1,1,1,0,0,1,1,0,0,0,0]=>3
[1,1,1,1,0,1,0,0,0,0,1,0]=>3
[1,1,1,1,0,1,0,0,0,1,0,0]=>3
[1,1,1,1,0,1,0,0,1,0,0,0]=>3
[1,1,1,1,0,1,0,1,0,0,0,0]=>3
[1,1,1,1,0,1,1,0,0,0,0,0]=>3
[1,1,1,1,1,0,0,0,0,0,1,0]=>3
[1,1,1,1,1,0,0,0,0,1,0,0]=>3
[1,1,1,1,1,0,0,0,1,0,0,0]=>3
[1,1,1,1,1,0,0,1,0,0,0,0]=>3
[1,1,1,1,1,0,1,0,0,0,0,0]=>2
[1,1,1,1,1,1,0,0,0,0,0,0]=>2
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
Gives the maximum of injective plus projective dimension of an indecomposable module over the corresponding Nakayama algebra.
For at most 6 simple modules this statistic coincides with the injective dimension of the regular module as a bimodule.
For at most 6 simple modules this statistic coincides with the injective dimension of the regular module as a bimodule.
Code
DeclareOperation("prinjsum",[IsList]); InstallMethod(prinjsum, "for a representation of a quiver", [IsList],0,function(LIST) local A,C,D,B,CoRegB,U,RegB; A:=LIST[1]; C:=ARQuiverNak([A]); U:=[];for i in C do Append(U,[ProjDimensionOfModule(i,30)+InjDimensionOfModule(i,30)]);od; return(Maximum(U)); end);
Created
Sep 19, 2018 at 21:34 by Rene Marczinzik
Updated
Sep 19, 2018 at 22:12 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!