edit this statistic or download as text // json
Identifier
Values
=>
Cc0005;cc-rep
[1,0]=>0 [1,0,1,0]=>0 [1,1,0,0]=>1 [1,0,1,0,1,0]=>0 [1,0,1,1,0,0]=>1 [1,1,0,0,1,0]=>0 [1,1,0,1,0,0]=>0 [1,1,1,0,0,0]=>2 [1,0,1,0,1,0,1,0]=>0 [1,0,1,0,1,1,0,0]=>1 [1,0,1,1,0,0,1,0]=>2 [1,0,1,1,0,1,0,0]=>0 [1,0,1,1,1,0,0,0]=>2 [1,1,0,0,1,0,1,0]=>0 [1,1,0,0,1,1,0,0]=>1 [1,1,0,1,0,0,1,0]=>0 [1,1,0,1,0,1,0,0]=>0 [1,1,0,1,1,0,0,0]=>1 [1,1,1,0,0,0,1,0]=>0 [1,1,1,0,0,1,0,0]=>0 [1,1,1,0,1,0,0,0]=>0 [1,1,1,1,0,0,0,0]=>3 [1,0,1,0,1,0,1,0,1,0]=>0 [1,0,1,0,1,0,1,1,0,0]=>1 [1,0,1,0,1,1,0,0,1,0]=>2 [1,0,1,0,1,1,0,1,0,0]=>0 [1,0,1,0,1,1,1,0,0,0]=>2 [1,0,1,1,0,0,1,0,1,0]=>0 [1,0,1,1,0,0,1,1,0,0]=>3 [1,0,1,1,0,1,0,0,1,0]=>0 [1,0,1,1,0,1,0,1,0,0]=>0 [1,0,1,1,0,1,1,0,0,0]=>1 [1,0,1,1,1,0,0,0,1,0]=>3 [1,0,1,1,1,0,0,1,0,0]=>3 [1,0,1,1,1,0,1,0,0,0]=>0 [1,0,1,1,1,1,0,0,0,0]=>3 [1,1,0,0,1,0,1,0,1,0]=>0 [1,1,0,0,1,0,1,1,0,0]=>1 [1,1,0,0,1,1,0,0,1,0]=>2 [1,1,0,0,1,1,0,1,0,0]=>0 [1,1,0,0,1,1,1,0,0,0]=>2 [1,1,0,1,0,0,1,0,1,0]=>0 [1,1,0,1,0,0,1,1,0,0]=>1 [1,1,0,1,0,1,0,0,1,0]=>0 [1,1,0,1,0,1,0,1,0,0]=>1 [1,1,0,1,0,1,1,0,0,0]=>1 [1,1,0,1,1,0,0,0,1,0]=>2 [1,1,0,1,1,0,0,1,0,0]=>0 [1,1,0,1,1,0,1,0,0,0]=>0 [1,1,0,1,1,1,0,0,0,0]=>2 [1,1,1,0,0,0,1,0,1,0]=>0 [1,1,1,0,0,0,1,1,0,0]=>1 [1,1,1,0,0,1,0,0,1,0]=>0 [1,1,1,0,0,1,0,1,0,0]=>0 [1,1,1,0,0,1,1,0,0,0]=>1 [1,1,1,0,1,0,0,0,1,0]=>0 [1,1,1,0,1,0,0,1,0,0]=>0 [1,1,1,0,1,0,1,0,0,0]=>0 [1,1,1,0,1,1,0,0,0,0]=>1 [1,1,1,1,0,0,0,0,1,0]=>0 [1,1,1,1,0,0,0,1,0,0]=>0 [1,1,1,1,0,0,1,0,0,0]=>0 [1,1,1,1,0,1,0,0,0,0]=>0 [1,1,1,1,1,0,0,0,0,0]=>4 [1,0,1,0,1,0,1,0,1,0,1,0]=>0 [1,0,1,0,1,0,1,0,1,1,0,0]=>1 [1,0,1,0,1,0,1,1,0,0,1,0]=>2 [1,0,1,0,1,0,1,1,0,1,0,0]=>0 [1,0,1,0,1,0,1,1,1,0,0,0]=>2 [1,0,1,0,1,1,0,0,1,0,1,0]=>3 [1,0,1,0,1,1,0,0,1,1,0,0]=>3 [1,0,1,0,1,1,0,1,0,0,1,0]=>0 [1,0,1,0,1,1,0,1,0,1,0,0]=>0 [1,0,1,0,1,1,0,1,1,0,0,0]=>1 [1,0,1,0,1,1,1,0,0,0,1,0]=>3 [1,0,1,0,1,1,1,0,0,1,0,0]=>3 [1,0,1,0,1,1,1,0,1,0,0,0]=>0 [1,0,1,0,1,1,1,1,0,0,0,0]=>3 [1,0,1,1,0,0,1,0,1,0,1,0]=>0 [1,0,1,1,0,0,1,0,1,1,0,0]=>1 [1,0,1,1,0,0,1,1,0,0,1,0]=>4 [1,0,1,1,0,0,1,1,0,1,0,0]=>0 [1,0,1,1,0,0,1,1,1,0,0,0]=>4 [1,0,1,1,0,1,0,0,1,0,1,0]=>0 [1,0,1,1,0,1,0,0,1,1,0,0]=>1 [1,0,1,1,0,1,0,1,0,0,1,0]=>0 [1,0,1,1,0,1,0,1,0,1,0,0]=>1 [1,0,1,1,0,1,0,1,1,0,0,0]=>1 [1,0,1,1,0,1,1,0,0,0,1,0]=>2 [1,0,1,1,0,1,1,0,0,1,0,0]=>0 [1,0,1,1,0,1,1,0,1,0,0,0]=>0 [1,0,1,1,0,1,1,1,0,0,0,0]=>2 [1,0,1,1,1,0,0,0,1,0,1,0]=>0 [1,0,1,1,1,0,0,0,1,1,0,0]=>4 [1,0,1,1,1,0,0,1,0,0,1,0]=>0 [1,0,1,1,1,0,0,1,0,1,0,0]=>0 [1,0,1,1,1,0,0,1,1,0,0,0]=>4 [1,0,1,1,1,0,1,0,0,0,1,0]=>0 [1,0,1,1,1,0,1,0,0,1,0,0]=>0 [1,0,1,1,1,0,1,0,1,0,0,0]=>0 [1,0,1,1,1,0,1,1,0,0,0,0]=>1 [1,0,1,1,1,1,0,0,0,0,1,0]=>4 [1,0,1,1,1,1,0,0,0,1,0,0]=>4 [1,0,1,1,1,1,0,0,1,0,0,0]=>4 [1,0,1,1,1,1,0,1,0,0,0,0]=>0 [1,0,1,1,1,1,1,0,0,0,0,0]=>4 [1,1,0,0,1,0,1,0,1,0,1,0]=>0 [1,1,0,0,1,0,1,0,1,1,0,0]=>1 [1,1,0,0,1,0,1,1,0,0,1,0]=>2 [1,1,0,0,1,0,1,1,0,1,0,0]=>0 [1,1,0,0,1,0,1,1,1,0,0,0]=>2 [1,1,0,0,1,1,0,0,1,0,1,0]=>0 [1,1,0,0,1,1,0,0,1,1,0,0]=>3 [1,1,0,0,1,1,0,1,0,0,1,0]=>0 [1,1,0,0,1,1,0,1,0,1,0,0]=>0 [1,1,0,0,1,1,0,1,1,0,0,0]=>1 [1,1,0,0,1,1,1,0,0,0,1,0]=>3 [1,1,0,0,1,1,1,0,0,1,0,0]=>3 [1,1,0,0,1,1,1,0,1,0,0,0]=>0 [1,1,0,0,1,1,1,1,0,0,0,0]=>3 [1,1,0,1,0,0,1,0,1,0,1,0]=>0 [1,1,0,1,0,0,1,0,1,1,0,0]=>1 [1,1,0,1,0,0,1,1,0,0,1,0]=>2 [1,1,0,1,0,0,1,1,0,1,0,0]=>0 [1,1,0,1,0,0,1,1,1,0,0,0]=>2 [1,1,0,1,0,1,0,0,1,0,1,0]=>0 [1,1,0,1,0,1,0,0,1,1,0,0]=>1 [1,1,0,1,0,1,0,1,0,0,1,0]=>0 [1,1,0,1,0,1,0,1,0,1,0,0]=>0 [1,1,0,1,0,1,0,1,1,0,0,0]=>2 [1,1,0,1,0,1,1,0,0,0,1,0]=>2 [1,1,0,1,0,1,1,0,0,1,0,0]=>0 [1,1,0,1,0,1,1,0,1,0,0,0]=>2 [1,1,0,1,0,1,1,1,0,0,0,0]=>2 [1,1,0,1,1,0,0,0,1,0,1,0]=>0 [1,1,0,1,1,0,0,0,1,1,0,0]=>3 [1,1,0,1,1,0,0,1,0,0,1,0]=>0 [1,1,0,1,1,0,0,1,0,1,0,0]=>0 [1,1,0,1,1,0,0,1,1,0,0,0]=>1 [1,1,0,1,1,0,1,0,0,0,1,0]=>0 [1,1,0,1,1,0,1,0,0,1,0,0]=>0 [1,1,0,1,1,0,1,0,1,0,0,0]=>1 [1,1,0,1,1,0,1,1,0,0,0,0]=>1 [1,1,0,1,1,1,0,0,0,0,1,0]=>3 [1,1,0,1,1,1,0,0,0,1,0,0]=>3 [1,1,0,1,1,1,0,0,1,0,0,0]=>0 [1,1,0,1,1,1,0,1,0,0,0,0]=>0 [1,1,0,1,1,1,1,0,0,0,0,0]=>3 [1,1,1,0,0,0,1,0,1,0,1,0]=>0 [1,1,1,0,0,0,1,0,1,1,0,0]=>1 [1,1,1,0,0,0,1,1,0,0,1,0]=>2 [1,1,1,0,0,0,1,1,0,1,0,0]=>0 [1,1,1,0,0,0,1,1,1,0,0,0]=>2 [1,1,1,0,0,1,0,0,1,0,1,0]=>0 [1,1,1,0,0,1,0,0,1,1,0,0]=>1 [1,1,1,0,0,1,0,1,0,0,1,0]=>0 [1,1,1,0,0,1,0,1,0,1,0,0]=>1 [1,1,1,0,0,1,0,1,1,0,0,0]=>1 [1,1,1,0,0,1,1,0,0,0,1,0]=>2 [1,1,1,0,0,1,1,0,0,1,0,0]=>0 [1,1,1,0,0,1,1,0,1,0,0,0]=>0 [1,1,1,0,0,1,1,1,0,0,0,0]=>2 [1,1,1,0,1,0,0,0,1,0,1,0]=>0 [1,1,1,0,1,0,0,0,1,1,0,0]=>1 [1,1,1,0,1,0,0,1,0,0,1,0]=>0 [1,1,1,0,1,0,0,1,0,1,0,0]=>1 [1,1,1,0,1,0,0,1,1,0,0,0]=>1 [1,1,1,0,1,0,1,0,0,0,1,0]=>0 [1,1,1,0,1,0,1,0,0,1,0,0]=>1 [1,1,1,0,1,0,1,0,1,0,0,0]=>1 [1,1,1,0,1,0,1,1,0,0,0,0]=>1 [1,1,1,0,1,1,0,0,0,0,1,0]=>2 [1,1,1,0,1,1,0,0,0,1,0,0]=>0 [1,1,1,0,1,1,0,0,1,0,0,0]=>0 [1,1,1,0,1,1,0,1,0,0,0,0]=>0 [1,1,1,0,1,1,1,0,0,0,0,0]=>2 [1,1,1,1,0,0,0,0,1,0,1,0]=>0 [1,1,1,1,0,0,0,0,1,1,0,0]=>1 [1,1,1,1,0,0,0,1,0,0,1,0]=>0 [1,1,1,1,0,0,0,1,0,1,0,0]=>0 [1,1,1,1,0,0,0,1,1,0,0,0]=>1 [1,1,1,1,0,0,1,0,0,0,1,0]=>0 [1,1,1,1,0,0,1,0,0,1,0,0]=>0 [1,1,1,1,0,0,1,0,1,0,0,0]=>0 [1,1,1,1,0,0,1,1,0,0,0,0]=>1 [1,1,1,1,0,1,0,0,0,0,1,0]=>0 [1,1,1,1,0,1,0,0,0,1,0,0]=>0 [1,1,1,1,0,1,0,0,1,0,0,0]=>0 [1,1,1,1,0,1,0,1,0,0,0,0]=>0 [1,1,1,1,0,1,1,0,0,0,0,0]=>1 [1,1,1,1,1,0,0,0,0,0,1,0]=>0 [1,1,1,1,1,0,0,0,0,1,0,0]=>0 [1,1,1,1,1,0,0,0,1,0,0,0]=>0 [1,1,1,1,1,0,0,1,0,0,0,0]=>0 [1,1,1,1,1,0,1,0,0,0,0,0]=>0 [1,1,1,1,1,1,0,0,0,0,0,0]=>5
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The maximal i such that the i-th simple module has projective dimension equal to the global dimension in the corresponding Nakayama algebra.
Code


DeclareOperation("largestindexgldim", [IsList]);

InstallMethod(largestindexgldim, "for a representation of a quiver", [IsList],0,function(L)


local AA,A,g,simA,n,U;

AA:=L[1];
A:=NakayamaAlgebra(AA,GF(3));
g:=gldim(AA);
simA:=SimpleModules(A);
n:=Size(simA);
U:=Filtered([1..n],x->ProjDimensionOfModule(simA[x],30)=g);
return(Maximum(U)-1);



end
);






Created
Sep 26, 2018 at 21:58 by Rene Marczinzik
Updated
Sep 26, 2018 at 21:58 by Rene Marczinzik