Identifier
- St001290: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[1,0]=>2
[1,0,1,0]=>3
[1,1,0,0]=>2
[1,0,1,0,1,0]=>4
[1,0,1,1,0,0]=>3
[1,1,0,0,1,0]=>3
[1,1,0,1,0,0]=>2
[1,1,1,0,0,0]=>2
[1,0,1,0,1,0,1,0]=>5
[1,0,1,0,1,1,0,0]=>4
[1,0,1,1,0,0,1,0]=>4
[1,0,1,1,0,1,0,0]=>3
[1,0,1,1,1,0,0,0]=>3
[1,1,0,0,1,0,1,0]=>4
[1,1,0,0,1,1,0,0]=>3
[1,1,0,1,0,0,1,0]=>3
[1,1,0,1,0,1,0,0]=>3
[1,1,0,1,1,0,0,0]=>2
[1,1,1,0,0,0,1,0]=>3
[1,1,1,0,0,1,0,0]=>2
[1,1,1,0,1,0,0,0]=>2
[1,1,1,1,0,0,0,0]=>2
[1,0,1,0,1,0,1,0,1,0]=>6
[1,0,1,0,1,0,1,1,0,0]=>5
[1,0,1,0,1,1,0,0,1,0]=>5
[1,0,1,0,1,1,0,1,0,0]=>4
[1,0,1,0,1,1,1,0,0,0]=>4
[1,0,1,1,0,0,1,0,1,0]=>5
[1,0,1,1,0,0,1,1,0,0]=>4
[1,0,1,1,0,1,0,0,1,0]=>4
[1,0,1,1,0,1,0,1,0,0]=>4
[1,0,1,1,0,1,1,0,0,0]=>3
[1,0,1,1,1,0,0,0,1,0]=>4
[1,0,1,1,1,0,0,1,0,0]=>3
[1,0,1,1,1,0,1,0,0,0]=>3
[1,0,1,1,1,1,0,0,0,0]=>3
[1,1,0,0,1,0,1,0,1,0]=>5
[1,1,0,0,1,0,1,1,0,0]=>4
[1,1,0,0,1,1,0,0,1,0]=>4
[1,1,0,0,1,1,0,1,0,0]=>3
[1,1,0,0,1,1,1,0,0,0]=>3
[1,1,0,1,0,0,1,0,1,0]=>4
[1,1,0,1,0,0,1,1,0,0]=>3
[1,1,0,1,0,1,0,0,1,0]=>4
[1,1,0,1,0,1,0,1,0,0]=>3
[1,1,0,1,0,1,1,0,0,0]=>3
[1,1,0,1,1,0,0,0,1,0]=>3
[1,1,0,1,1,0,0,1,0,0]=>3
[1,1,0,1,1,0,1,0,0,0]=>3
[1,1,0,1,1,1,0,0,0,0]=>2
[1,1,1,0,0,0,1,0,1,0]=>4
[1,1,1,0,0,0,1,1,0,0]=>3
[1,1,1,0,0,1,0,0,1,0]=>3
[1,1,1,0,0,1,0,1,0,0]=>3
[1,1,1,0,0,1,1,0,0,0]=>2
[1,1,1,0,1,0,0,0,1,0]=>3
[1,1,1,0,1,0,0,1,0,0]=>3
[1,1,1,0,1,0,1,0,0,0]=>2
[1,1,1,0,1,1,0,0,0,0]=>2
[1,1,1,1,0,0,0,0,1,0]=>3
[1,1,1,1,0,0,0,1,0,0]=>2
[1,1,1,1,0,0,1,0,0,0]=>2
[1,1,1,1,0,1,0,0,0,0]=>2
[1,1,1,1,1,0,0,0,0,0]=>2
[1,0,1,0,1,0,1,0,1,0,1,0]=>7
[1,0,1,0,1,0,1,0,1,1,0,0]=>6
[1,0,1,0,1,0,1,1,0,0,1,0]=>6
[1,0,1,0,1,0,1,1,0,1,0,0]=>5
[1,0,1,0,1,0,1,1,1,0,0,0]=>5
[1,0,1,0,1,1,0,0,1,0,1,0]=>6
[1,0,1,0,1,1,0,0,1,1,0,0]=>5
[1,0,1,0,1,1,0,1,0,0,1,0]=>5
[1,0,1,0,1,1,0,1,0,1,0,0]=>5
[1,0,1,0,1,1,0,1,1,0,0,0]=>4
[1,0,1,0,1,1,1,0,0,0,1,0]=>5
[1,0,1,0,1,1,1,0,0,1,0,0]=>4
[1,0,1,0,1,1,1,0,1,0,0,0]=>4
[1,0,1,0,1,1,1,1,0,0,0,0]=>4
[1,0,1,1,0,0,1,0,1,0,1,0]=>6
[1,0,1,1,0,0,1,0,1,1,0,0]=>5
[1,0,1,1,0,0,1,1,0,0,1,0]=>5
[1,0,1,1,0,0,1,1,0,1,0,0]=>4
[1,0,1,1,0,0,1,1,1,0,0,0]=>4
[1,0,1,1,0,1,0,0,1,0,1,0]=>5
[1,0,1,1,0,1,0,0,1,1,0,0]=>4
[1,0,1,1,0,1,0,1,0,0,1,0]=>5
[1,0,1,1,0,1,0,1,0,1,0,0]=>4
[1,0,1,1,0,1,0,1,1,0,0,0]=>4
[1,0,1,1,0,1,1,0,0,0,1,0]=>4
[1,0,1,1,0,1,1,0,0,1,0,0]=>4
[1,0,1,1,0,1,1,0,1,0,0,0]=>4
[1,0,1,1,0,1,1,1,0,0,0,0]=>3
[1,0,1,1,1,0,0,0,1,0,1,0]=>5
[1,0,1,1,1,0,0,0,1,1,0,0]=>4
[1,0,1,1,1,0,0,1,0,0,1,0]=>4
[1,0,1,1,1,0,0,1,0,1,0,0]=>4
[1,0,1,1,1,0,0,1,1,0,0,0]=>3
[1,0,1,1,1,0,1,0,0,0,1,0]=>4
[1,0,1,1,1,0,1,0,0,1,0,0]=>4
[1,0,1,1,1,0,1,0,1,0,0,0]=>3
[1,0,1,1,1,0,1,1,0,0,0,0]=>3
[1,0,1,1,1,1,0,0,0,0,1,0]=>4
[1,0,1,1,1,1,0,0,0,1,0,0]=>3
[1,0,1,1,1,1,0,0,1,0,0,0]=>3
[1,0,1,1,1,1,0,1,0,0,0,0]=>3
[1,0,1,1,1,1,1,0,0,0,0,0]=>3
[1,1,0,0,1,0,1,0,1,0,1,0]=>6
[1,1,0,0,1,0,1,0,1,1,0,0]=>5
[1,1,0,0,1,0,1,1,0,0,1,0]=>5
[1,1,0,0,1,0,1,1,0,1,0,0]=>4
[1,1,0,0,1,0,1,1,1,0,0,0]=>4
[1,1,0,0,1,1,0,0,1,0,1,0]=>5
[1,1,0,0,1,1,0,0,1,1,0,0]=>4
[1,1,0,0,1,1,0,1,0,0,1,0]=>4
[1,1,0,0,1,1,0,1,0,1,0,0]=>4
[1,1,0,0,1,1,0,1,1,0,0,0]=>3
[1,1,0,0,1,1,1,0,0,0,1,0]=>4
[1,1,0,0,1,1,1,0,0,1,0,0]=>3
[1,1,0,0,1,1,1,0,1,0,0,0]=>3
[1,1,0,0,1,1,1,1,0,0,0,0]=>3
[1,1,0,1,0,0,1,0,1,0,1,0]=>5
[1,1,0,1,0,0,1,0,1,1,0,0]=>4
[1,1,0,1,0,0,1,1,0,0,1,0]=>4
[1,1,0,1,0,0,1,1,0,1,0,0]=>4
[1,1,0,1,0,0,1,1,1,0,0,0]=>3
[1,1,0,1,0,1,0,0,1,0,1,0]=>5
[1,1,0,1,0,1,0,0,1,1,0,0]=>4
[1,1,0,1,0,1,0,1,0,0,1,0]=>4
[1,1,0,1,0,1,0,1,0,1,0,0]=>4
[1,1,0,1,0,1,0,1,1,0,0,0]=>3
[1,1,0,1,0,1,1,0,0,0,1,0]=>4
[1,1,0,1,0,1,1,0,0,1,0,0]=>3
[1,1,0,1,0,1,1,0,1,0,0,0]=>3
[1,1,0,1,0,1,1,1,0,0,0,0]=>3
[1,1,0,1,1,0,0,0,1,0,1,0]=>4
[1,1,0,1,1,0,0,0,1,1,0,0]=>3
[1,1,0,1,1,0,0,1,0,0,1,0]=>4
[1,1,0,1,1,0,0,1,0,1,0,0]=>3
[1,1,0,1,1,0,0,1,1,0,0,0]=>3
[1,1,0,1,1,0,1,0,0,0,1,0]=>4
[1,1,0,1,1,0,1,0,0,1,0,0]=>3
[1,1,0,1,1,0,1,0,1,0,0,0]=>3
[1,1,0,1,1,0,1,1,0,0,0,0]=>3
[1,1,0,1,1,1,0,0,0,0,1,0]=>3
[1,1,0,1,1,1,0,0,0,1,0,0]=>3
[1,1,0,1,1,1,0,0,1,0,0,0]=>3
[1,1,0,1,1,1,0,1,0,0,0,0]=>3
[1,1,0,1,1,1,1,0,0,0,0,0]=>2
[1,1,1,0,0,0,1,0,1,0,1,0]=>5
[1,1,1,0,0,0,1,0,1,1,0,0]=>4
[1,1,1,0,0,0,1,1,0,0,1,0]=>4
[1,1,1,0,0,0,1,1,0,1,0,0]=>3
[1,1,1,0,0,0,1,1,1,0,0,0]=>3
[1,1,1,0,0,1,0,0,1,0,1,0]=>4
[1,1,1,0,0,1,0,0,1,1,0,0]=>3
[1,1,1,0,0,1,0,1,0,0,1,0]=>4
[1,1,1,0,0,1,0,1,0,1,0,0]=>3
[1,1,1,0,0,1,0,1,1,0,0,0]=>3
[1,1,1,0,0,1,1,0,0,0,1,0]=>3
[1,1,1,0,0,1,1,0,0,1,0,0]=>3
[1,1,1,0,0,1,1,0,1,0,0,0]=>3
[1,1,1,0,0,1,1,1,0,0,0,0]=>2
[1,1,1,0,1,0,0,0,1,0,1,0]=>4
[1,1,1,0,1,0,0,0,1,1,0,0]=>3
[1,1,1,0,1,0,0,1,0,0,1,0]=>4
[1,1,1,0,1,0,0,1,0,1,0,0]=>3
[1,1,1,0,1,0,0,1,1,0,0,0]=>3
[1,1,1,0,1,0,1,0,0,0,1,0]=>3
[1,1,1,0,1,0,1,0,0,1,0,0]=>3
[1,1,1,0,1,0,1,0,1,0,0,0]=>3
[1,1,1,0,1,0,1,1,0,0,0,0]=>2
[1,1,1,0,1,1,0,0,0,0,1,0]=>3
[1,1,1,0,1,1,0,0,0,1,0,0]=>3
[1,1,1,0,1,1,0,0,1,0,0,0]=>3
[1,1,1,0,1,1,0,1,0,0,0,0]=>2
[1,1,1,0,1,1,1,0,0,0,0,0]=>2
[1,1,1,1,0,0,0,0,1,0,1,0]=>4
[1,1,1,1,0,0,0,0,1,1,0,0]=>3
[1,1,1,1,0,0,0,1,0,0,1,0]=>3
[1,1,1,1,0,0,0,1,0,1,0,0]=>3
[1,1,1,1,0,0,0,1,1,0,0,0]=>2
[1,1,1,1,0,0,1,0,0,0,1,0]=>3
[1,1,1,1,0,0,1,0,0,1,0,0]=>3
[1,1,1,1,0,0,1,0,1,0,0,0]=>2
[1,1,1,1,0,0,1,1,0,0,0,0]=>2
[1,1,1,1,0,1,0,0,0,0,1,0]=>3
[1,1,1,1,0,1,0,0,0,1,0,0]=>3
[1,1,1,1,0,1,0,0,1,0,0,0]=>2
[1,1,1,1,0,1,0,1,0,0,0,0]=>2
[1,1,1,1,0,1,1,0,0,0,0,0]=>2
[1,1,1,1,1,0,0,0,0,0,1,0]=>3
[1,1,1,1,1,0,0,0,0,1,0,0]=>2
[1,1,1,1,1,0,0,0,1,0,0,0]=>2
[1,1,1,1,1,0,0,1,0,0,0,0]=>2
[1,1,1,1,1,0,1,0,0,0,0,0]=>2
[1,1,1,1,1,1,0,0,0,0,0,0]=>2
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The first natural number n such that the tensor product of n copies of D(A) is zero for the corresponding Nakayama algebra A.
Code
DeclareOperation("iteratedda", [IsList]); InstallMethod(iteratedda, "for a representation of a quiver", [IsList],0,function(L) local A,RegA,J,simA,U,projA,UU,CoRegA,W,WW,WW2; A:=L[1]; CoRegA:=DirectSumOfQPAModules(IndecInjectiveModules(A)); W:=NakayamaFunctorOfModule(CoRegA); WW:=[NakayamaFunctorOfModule(CoRegA)];for i in [2..10] do Append(WW,[NakayamaFunctorOfModule(WW[i-1])]);;od; WW2:=Filtered([1..10],x->Dimension(WW[x])>0); return(Maximum(WW2)+1); end );
Created
Nov 15, 2018 at 21:12 by Rene Marczinzik
Updated
Nov 15, 2018 at 21:12 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!