Identifier
- St001291: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[1,0]=>1
[1,0,1,0]=>2
[1,1,0,0]=>1
[1,0,1,0,1,0]=>3
[1,0,1,1,0,0]=>2
[1,1,0,0,1,0]=>3
[1,1,0,1,0,0]=>2
[1,1,1,0,0,0]=>1
[1,0,1,0,1,0,1,0]=>4
[1,0,1,0,1,1,0,0]=>3
[1,0,1,1,0,0,1,0]=>4
[1,0,1,1,0,1,0,0]=>3
[1,0,1,1,1,0,0,0]=>2
[1,1,0,0,1,0,1,0]=>4
[1,1,0,0,1,1,0,0]=>3
[1,1,0,1,0,0,1,0]=>4
[1,1,0,1,0,1,0,0]=>3
[1,1,0,1,1,0,0,0]=>2
[1,1,1,0,0,0,1,0]=>4
[1,1,1,0,0,1,0,0]=>3
[1,1,1,0,1,0,0,0]=>2
[1,1,1,1,0,0,0,0]=>1
[1,0,1,0,1,0,1,0,1,0]=>5
[1,0,1,0,1,0,1,1,0,0]=>4
[1,0,1,0,1,1,0,0,1,0]=>5
[1,0,1,0,1,1,0,1,0,0]=>4
[1,0,1,0,1,1,1,0,0,0]=>3
[1,0,1,1,0,0,1,0,1,0]=>5
[1,0,1,1,0,0,1,1,0,0]=>4
[1,0,1,1,0,1,0,0,1,0]=>5
[1,0,1,1,0,1,0,1,0,0]=>4
[1,0,1,1,0,1,1,0,0,0]=>3
[1,0,1,1,1,0,0,0,1,0]=>5
[1,0,1,1,1,0,0,1,0,0]=>4
[1,0,1,1,1,0,1,0,0,0]=>3
[1,0,1,1,1,1,0,0,0,0]=>2
[1,1,0,0,1,0,1,0,1,0]=>5
[1,1,0,0,1,0,1,1,0,0]=>4
[1,1,0,0,1,1,0,0,1,0]=>5
[1,1,0,0,1,1,0,1,0,0]=>4
[1,1,0,0,1,1,1,0,0,0]=>3
[1,1,0,1,0,0,1,0,1,0]=>5
[1,1,0,1,0,0,1,1,0,0]=>4
[1,1,0,1,0,1,0,0,1,0]=>5
[1,1,0,1,0,1,0,1,0,0]=>4
[1,1,0,1,0,1,1,0,0,0]=>3
[1,1,0,1,1,0,0,0,1,0]=>5
[1,1,0,1,1,0,0,1,0,0]=>4
[1,1,0,1,1,0,1,0,0,0]=>3
[1,1,0,1,1,1,0,0,0,0]=>2
[1,1,1,0,0,0,1,0,1,0]=>5
[1,1,1,0,0,0,1,1,0,0]=>4
[1,1,1,0,0,1,0,0,1,0]=>5
[1,1,1,0,0,1,0,1,0,0]=>4
[1,1,1,0,0,1,1,0,0,0]=>3
[1,1,1,0,1,0,0,0,1,0]=>5
[1,1,1,0,1,0,0,1,0,0]=>4
[1,1,1,0,1,0,1,0,0,0]=>3
[1,1,1,0,1,1,0,0,0,0]=>2
[1,1,1,1,0,0,0,0,1,0]=>5
[1,1,1,1,0,0,0,1,0,0]=>4
[1,1,1,1,0,0,1,0,0,0]=>3
[1,1,1,1,0,1,0,0,0,0]=>2
[1,1,1,1,1,0,0,0,0,0]=>1
[1,0,1,0,1,0,1,0,1,0,1,0]=>6
[1,0,1,0,1,0,1,0,1,1,0,0]=>5
[1,0,1,0,1,0,1,1,0,0,1,0]=>6
[1,0,1,0,1,0,1,1,0,1,0,0]=>5
[1,0,1,0,1,0,1,1,1,0,0,0]=>4
[1,0,1,0,1,1,0,0,1,0,1,0]=>6
[1,0,1,0,1,1,0,0,1,1,0,0]=>5
[1,0,1,0,1,1,0,1,0,0,1,0]=>6
[1,0,1,0,1,1,0,1,0,1,0,0]=>5
[1,0,1,0,1,1,0,1,1,0,0,0]=>4
[1,0,1,0,1,1,1,0,0,0,1,0]=>6
[1,0,1,0,1,1,1,0,0,1,0,0]=>5
[1,0,1,0,1,1,1,0,1,0,0,0]=>4
[1,0,1,0,1,1,1,1,0,0,0,0]=>3
[1,0,1,1,0,0,1,0,1,0,1,0]=>6
[1,0,1,1,0,0,1,0,1,1,0,0]=>5
[1,0,1,1,0,0,1,1,0,0,1,0]=>6
[1,0,1,1,0,0,1,1,0,1,0,0]=>5
[1,0,1,1,0,0,1,1,1,0,0,0]=>4
[1,0,1,1,0,1,0,0,1,0,1,0]=>6
[1,0,1,1,0,1,0,0,1,1,0,0]=>5
[1,0,1,1,0,1,0,1,0,0,1,0]=>6
[1,0,1,1,0,1,0,1,0,1,0,0]=>5
[1,0,1,1,0,1,0,1,1,0,0,0]=>4
[1,0,1,1,0,1,1,0,0,0,1,0]=>6
[1,0,1,1,0,1,1,0,0,1,0,0]=>5
[1,0,1,1,0,1,1,0,1,0,0,0]=>4
[1,0,1,1,0,1,1,1,0,0,0,0]=>3
[1,0,1,1,1,0,0,0,1,0,1,0]=>6
[1,0,1,1,1,0,0,0,1,1,0,0]=>5
[1,0,1,1,1,0,0,1,0,0,1,0]=>6
[1,0,1,1,1,0,0,1,0,1,0,0]=>5
[1,0,1,1,1,0,0,1,1,0,0,0]=>4
[1,0,1,1,1,0,1,0,0,0,1,0]=>6
[1,0,1,1,1,0,1,0,0,1,0,0]=>5
[1,0,1,1,1,0,1,0,1,0,0,0]=>4
[1,0,1,1,1,0,1,1,0,0,0,0]=>3
[1,0,1,1,1,1,0,0,0,0,1,0]=>6
[1,0,1,1,1,1,0,0,0,1,0,0]=>5
[1,0,1,1,1,1,0,0,1,0,0,0]=>4
[1,0,1,1,1,1,0,1,0,0,0,0]=>3
[1,0,1,1,1,1,1,0,0,0,0,0]=>2
[1,1,0,0,1,0,1,0,1,0,1,0]=>6
[1,1,0,0,1,0,1,0,1,1,0,0]=>5
[1,1,0,0,1,0,1,1,0,0,1,0]=>6
[1,1,0,0,1,0,1,1,0,1,0,0]=>5
[1,1,0,0,1,0,1,1,1,0,0,0]=>4
[1,1,0,0,1,1,0,0,1,0,1,0]=>6
[1,1,0,0,1,1,0,0,1,1,0,0]=>5
[1,1,0,0,1,1,0,1,0,0,1,0]=>6
[1,1,0,0,1,1,0,1,0,1,0,0]=>5
[1,1,0,0,1,1,0,1,1,0,0,0]=>4
[1,1,0,0,1,1,1,0,0,0,1,0]=>6
[1,1,0,0,1,1,1,0,0,1,0,0]=>5
[1,1,0,0,1,1,1,0,1,0,0,0]=>4
[1,1,0,0,1,1,1,1,0,0,0,0]=>3
[1,1,0,1,0,0,1,0,1,0,1,0]=>6
[1,1,0,1,0,0,1,0,1,1,0,0]=>5
[1,1,0,1,0,0,1,1,0,0,1,0]=>6
[1,1,0,1,0,0,1,1,0,1,0,0]=>5
[1,1,0,1,0,0,1,1,1,0,0,0]=>4
[1,1,0,1,0,1,0,0,1,0,1,0]=>6
[1,1,0,1,0,1,0,0,1,1,0,0]=>5
[1,1,0,1,0,1,0,1,0,0,1,0]=>6
[1,1,0,1,0,1,0,1,0,1,0,0]=>5
[1,1,0,1,0,1,0,1,1,0,0,0]=>4
[1,1,0,1,0,1,1,0,0,0,1,0]=>6
[1,1,0,1,0,1,1,0,0,1,0,0]=>5
[1,1,0,1,0,1,1,0,1,0,0,0]=>4
[1,1,0,1,0,1,1,1,0,0,0,0]=>3
[1,1,0,1,1,0,0,0,1,0,1,0]=>6
[1,1,0,1,1,0,0,0,1,1,0,0]=>5
[1,1,0,1,1,0,0,1,0,0,1,0]=>6
[1,1,0,1,1,0,0,1,0,1,0,0]=>5
[1,1,0,1,1,0,0,1,1,0,0,0]=>4
[1,1,0,1,1,0,1,0,0,0,1,0]=>6
[1,1,0,1,1,0,1,0,0,1,0,0]=>5
[1,1,0,1,1,0,1,0,1,0,0,0]=>4
[1,1,0,1,1,0,1,1,0,0,0,0]=>3
[1,1,0,1,1,1,0,0,0,0,1,0]=>6
[1,1,0,1,1,1,0,0,0,1,0,0]=>5
[1,1,0,1,1,1,0,0,1,0,0,0]=>4
[1,1,0,1,1,1,0,1,0,0,0,0]=>3
[1,1,0,1,1,1,1,0,0,0,0,0]=>2
[1,1,1,0,0,0,1,0,1,0,1,0]=>6
[1,1,1,0,0,0,1,0,1,1,0,0]=>5
[1,1,1,0,0,0,1,1,0,0,1,0]=>6
[1,1,1,0,0,0,1,1,0,1,0,0]=>5
[1,1,1,0,0,0,1,1,1,0,0,0]=>4
[1,1,1,0,0,1,0,0,1,0,1,0]=>6
[1,1,1,0,0,1,0,0,1,1,0,0]=>5
[1,1,1,0,0,1,0,1,0,0,1,0]=>6
[1,1,1,0,0,1,0,1,0,1,0,0]=>5
[1,1,1,0,0,1,0,1,1,0,0,0]=>4
[1,1,1,0,0,1,1,0,0,0,1,0]=>6
[1,1,1,0,0,1,1,0,0,1,0,0]=>5
[1,1,1,0,0,1,1,0,1,0,0,0]=>4
[1,1,1,0,0,1,1,1,0,0,0,0]=>3
[1,1,1,0,1,0,0,0,1,0,1,0]=>6
[1,1,1,0,1,0,0,0,1,1,0,0]=>5
[1,1,1,0,1,0,0,1,0,0,1,0]=>6
[1,1,1,0,1,0,0,1,0,1,0,0]=>5
[1,1,1,0,1,0,0,1,1,0,0,0]=>4
[1,1,1,0,1,0,1,0,0,0,1,0]=>6
[1,1,1,0,1,0,1,0,0,1,0,0]=>5
[1,1,1,0,1,0,1,0,1,0,0,0]=>4
[1,1,1,0,1,0,1,1,0,0,0,0]=>3
[1,1,1,0,1,1,0,0,0,0,1,0]=>6
[1,1,1,0,1,1,0,0,0,1,0,0]=>5
[1,1,1,0,1,1,0,0,1,0,0,0]=>4
[1,1,1,0,1,1,0,1,0,0,0,0]=>3
[1,1,1,0,1,1,1,0,0,0,0,0]=>2
[1,1,1,1,0,0,0,0,1,0,1,0]=>6
[1,1,1,1,0,0,0,0,1,1,0,0]=>5
[1,1,1,1,0,0,0,1,0,0,1,0]=>6
[1,1,1,1,0,0,0,1,0,1,0,0]=>5
[1,1,1,1,0,0,0,1,1,0,0,0]=>4
[1,1,1,1,0,0,1,0,0,0,1,0]=>6
[1,1,1,1,0,0,1,0,0,1,0,0]=>5
[1,1,1,1,0,0,1,0,1,0,0,0]=>4
[1,1,1,1,0,0,1,1,0,0,0,0]=>3
[1,1,1,1,0,1,0,0,0,0,1,0]=>6
[1,1,1,1,0,1,0,0,0,1,0,0]=>5
[1,1,1,1,0,1,0,0,1,0,0,0]=>4
[1,1,1,1,0,1,0,1,0,0,0,0]=>3
[1,1,1,1,0,1,1,0,0,0,0,0]=>2
[1,1,1,1,1,0,0,0,0,0,1,0]=>6
[1,1,1,1,1,0,0,0,0,1,0,0]=>5
[1,1,1,1,1,0,0,0,1,0,0,0]=>4
[1,1,1,1,1,0,0,1,0,0,0,0]=>3
[1,1,1,1,1,0,1,0,0,0,0,0]=>2
[1,1,1,1,1,1,0,0,0,0,0,0]=>1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path.
Let $A$ be the Nakayama algebra associated to a Dyck path as given in DyckPaths/NakayamaAlgebras. This statistics is the number of indecomposable summands of $D(A) \otimes D(A)$, where $D(A)$ is the natural dual of $A$.
Let $A$ be the Nakayama algebra associated to a Dyck path as given in DyckPaths/NakayamaAlgebras. This statistics is the number of indecomposable summands of $D(A) \otimes D(A)$, where $D(A)$ is the natural dual of $A$.
Code
DeclareOperation("iterateddatest2", [IsList]); InstallMethod(iterateddatest2, "for a representation of a quiver", [IsList],0,function(L) local A,RegA,J,simA,U,projA,UU,CoRegA,W,WW,WW2,UU2; A:=L[1]; CoRegA:=DirectSumOfQPAModules(IndecInjectiveModules(A)); W:=NakayamaFunctorOfModule(CoRegA); UU:=DecomposeModule(W); return(Size(UU)); end );
Created
Nov 16, 2018 at 09:01 by Rene Marczinzik
Updated
Nov 16, 2018 at 10:21 by Christian Stump
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!