Identifier
- St001296: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[1,0]=>0
[1,0,1,0]=>1
[1,1,0,0]=>0
[1,0,1,0,1,0]=>2
[1,0,1,1,0,0]=>1
[1,1,0,0,1,0]=>1
[1,1,0,1,0,0]=>1
[1,1,1,0,0,0]=>0
[1,0,1,0,1,0,1,0]=>3
[1,0,1,0,1,1,0,0]=>2
[1,0,1,1,0,0,1,0]=>1
[1,0,1,1,0,1,0,0]=>2
[1,0,1,1,1,0,0,0]=>1
[1,1,0,0,1,0,1,0]=>2
[1,1,0,0,1,1,0,0]=>1
[1,1,0,1,0,0,1,0]=>2
[1,1,0,1,0,1,0,0]=>2
[1,1,0,1,1,0,0,0]=>1
[1,1,1,0,0,0,1,0]=>1
[1,1,1,0,0,1,0,0]=>1
[1,1,1,0,1,0,0,0]=>1
[1,1,1,1,0,0,0,0]=>0
[1,0,1,0,1,0,1,0,1,0]=>4
[1,0,1,0,1,0,1,1,0,0]=>3
[1,0,1,0,1,1,0,0,1,0]=>2
[1,0,1,0,1,1,0,1,0,0]=>3
[1,0,1,0,1,1,1,0,0,0]=>2
[1,0,1,1,0,0,1,0,1,0]=>2
[1,0,1,1,0,0,1,1,0,0]=>1
[1,0,1,1,0,1,0,0,1,0]=>2
[1,0,1,1,0,1,0,1,0,0]=>3
[1,0,1,1,0,1,1,0,0,0]=>2
[1,0,1,1,1,0,0,0,1,0]=>1
[1,0,1,1,1,0,0,1,0,0]=>1
[1,0,1,1,1,0,1,0,0,0]=>2
[1,0,1,1,1,1,0,0,0,0]=>1
[1,1,0,0,1,0,1,0,1,0]=>3
[1,1,0,0,1,0,1,1,0,0]=>2
[1,1,0,0,1,1,0,0,1,0]=>1
[1,1,0,0,1,1,0,1,0,0]=>2
[1,1,0,0,1,1,1,0,0,0]=>1
[1,1,0,1,0,0,1,0,1,0]=>3
[1,1,0,1,0,0,1,1,0,0]=>2
[1,1,0,1,0,1,0,0,1,0]=>3
[1,1,0,1,0,1,0,1,0,0]=>2
[1,1,0,1,0,1,1,0,0,0]=>2
[1,1,0,1,1,0,0,0,1,0]=>1
[1,1,0,1,1,0,0,1,0,0]=>2
[1,1,0,1,1,0,1,0,0,0]=>2
[1,1,0,1,1,1,0,0,0,0]=>1
[1,1,1,0,0,0,1,0,1,0]=>2
[1,1,1,0,0,0,1,1,0,0]=>1
[1,1,1,0,0,1,0,0,1,0]=>2
[1,1,1,0,0,1,0,1,0,0]=>2
[1,1,1,0,0,1,1,0,0,0]=>1
[1,1,1,0,1,0,0,0,1,0]=>2
[1,1,1,0,1,0,0,1,0,0]=>2
[1,1,1,0,1,0,1,0,0,0]=>2
[1,1,1,0,1,1,0,0,0,0]=>1
[1,1,1,1,0,0,0,0,1,0]=>1
[1,1,1,1,0,0,0,1,0,0]=>1
[1,1,1,1,0,0,1,0,0,0]=>1
[1,1,1,1,0,1,0,0,0,0]=>1
[1,1,1,1,1,0,0,0,0,0]=>0
[1,0,1,0,1,0,1,0,1,0,1,0]=>5
[1,0,1,0,1,0,1,0,1,1,0,0]=>4
[1,0,1,0,1,0,1,1,0,0,1,0]=>3
[1,0,1,0,1,0,1,1,0,1,0,0]=>4
[1,0,1,0,1,0,1,1,1,0,0,0]=>3
[1,0,1,0,1,1,0,0,1,0,1,0]=>2
[1,0,1,0,1,1,0,0,1,1,0,0]=>2
[1,0,1,0,1,1,0,1,0,0,1,0]=>3
[1,0,1,0,1,1,0,1,0,1,0,0]=>4
[1,0,1,0,1,1,0,1,1,0,0,0]=>3
[1,0,1,0,1,1,1,0,0,0,1,0]=>2
[1,0,1,0,1,1,1,0,0,1,0,0]=>2
[1,0,1,0,1,1,1,0,1,0,0,0]=>3
[1,0,1,0,1,1,1,1,0,0,0,0]=>2
[1,0,1,1,0,0,1,0,1,0,1,0]=>3
[1,0,1,1,0,0,1,0,1,1,0,0]=>2
[1,0,1,1,0,0,1,1,0,0,1,0]=>1
[1,0,1,1,0,0,1,1,0,1,0,0]=>2
[1,0,1,1,0,0,1,1,1,0,0,0]=>1
[1,0,1,1,0,1,0,0,1,0,1,0]=>3
[1,0,1,1,0,1,0,0,1,1,0,0]=>2
[1,0,1,1,0,1,0,1,0,0,1,0]=>4
[1,0,1,1,0,1,0,1,0,1,0,0]=>3
[1,0,1,1,0,1,0,1,1,0,0,0]=>3
[1,0,1,1,0,1,1,0,0,0,1,0]=>2
[1,0,1,1,0,1,1,0,0,1,0,0]=>2
[1,0,1,1,0,1,1,0,1,0,0,0]=>3
[1,0,1,1,0,1,1,1,0,0,0,0]=>2
[1,0,1,1,1,0,0,0,1,0,1,0]=>2
[1,0,1,1,1,0,0,0,1,1,0,0]=>1
[1,0,1,1,1,0,0,1,0,0,1,0]=>2
[1,0,1,1,1,0,0,1,0,1,0,0]=>2
[1,0,1,1,1,0,0,1,1,0,0,0]=>1
[1,0,1,1,1,0,1,0,0,0,1,0]=>2
[1,0,1,1,1,0,1,0,0,1,0,0]=>2
[1,0,1,1,1,0,1,0,1,0,0,0]=>3
[1,0,1,1,1,0,1,1,0,0,0,0]=>2
[1,0,1,1,1,1,0,0,0,0,1,0]=>1
[1,0,1,1,1,1,0,0,0,1,0,0]=>1
[1,0,1,1,1,1,0,0,1,0,0,0]=>1
[1,0,1,1,1,1,0,1,0,0,0,0]=>2
[1,0,1,1,1,1,1,0,0,0,0,0]=>1
[1,1,0,0,1,0,1,0,1,0,1,0]=>4
[1,1,0,0,1,0,1,0,1,1,0,0]=>3
[1,1,0,0,1,0,1,1,0,0,1,0]=>2
[1,1,0,0,1,0,1,1,0,1,0,0]=>3
[1,1,0,0,1,0,1,1,1,0,0,0]=>2
[1,1,0,0,1,1,0,0,1,0,1,0]=>2
[1,1,0,0,1,1,0,0,1,1,0,0]=>1
[1,1,0,0,1,1,0,1,0,0,1,0]=>2
[1,1,0,0,1,1,0,1,0,1,0,0]=>3
[1,1,0,0,1,1,0,1,1,0,0,0]=>2
[1,1,0,0,1,1,1,0,0,0,1,0]=>1
[1,1,0,0,1,1,1,0,0,1,0,0]=>1
[1,1,0,0,1,1,1,0,1,0,0,0]=>2
[1,1,0,0,1,1,1,1,0,0,0,0]=>1
[1,1,0,1,0,0,1,0,1,0,1,0]=>4
[1,1,0,1,0,0,1,0,1,1,0,0]=>3
[1,1,0,1,0,0,1,1,0,0,1,0]=>2
[1,1,0,1,0,0,1,1,0,1,0,0]=>3
[1,1,0,1,0,0,1,1,1,0,0,0]=>2
[1,1,0,1,0,1,0,0,1,0,1,0]=>4
[1,1,0,1,0,1,0,0,1,1,0,0]=>3
[1,1,0,1,0,1,0,1,0,0,1,0]=>3
[1,1,0,1,0,1,0,1,0,1,0,0]=>3
[1,1,0,1,0,1,0,1,1,0,0,0]=>2
[1,1,0,1,0,1,1,0,0,0,1,0]=>2
[1,1,0,1,0,1,1,0,0,1,0,0]=>3
[1,1,0,1,0,1,1,0,1,0,0,0]=>2
[1,1,0,1,0,1,1,1,0,0,0,0]=>2
[1,1,0,1,1,0,0,0,1,0,1,0]=>2
[1,1,0,1,1,0,0,0,1,1,0,0]=>1
[1,1,0,1,1,0,0,1,0,0,1,0]=>2
[1,1,0,1,1,0,0,1,0,1,0,0]=>3
[1,1,0,1,1,0,0,1,1,0,0,0]=>2
[1,1,0,1,1,0,1,0,0,0,1,0]=>2
[1,1,0,1,1,0,1,0,0,1,0,0]=>3
[1,1,0,1,1,0,1,0,1,0,0,0]=>2
[1,1,0,1,1,0,1,1,0,0,0,0]=>2
[1,1,0,1,1,1,0,0,0,0,1,0]=>1
[1,1,0,1,1,1,0,0,0,1,0,0]=>1
[1,1,0,1,1,1,0,0,1,0,0,0]=>2
[1,1,0,1,1,1,0,1,0,0,0,0]=>2
[1,1,0,1,1,1,1,0,0,0,0,0]=>1
[1,1,1,0,0,0,1,0,1,0,1,0]=>3
[1,1,1,0,0,0,1,0,1,1,0,0]=>2
[1,1,1,0,0,0,1,1,0,0,1,0]=>1
[1,1,1,0,0,0,1,1,0,1,0,0]=>2
[1,1,1,0,0,0,1,1,1,0,0,0]=>1
[1,1,1,0,0,1,0,0,1,0,1,0]=>3
[1,1,1,0,0,1,0,0,1,1,0,0]=>2
[1,1,1,0,0,1,0,1,0,0,1,0]=>3
[1,1,1,0,0,1,0,1,0,1,0,0]=>2
[1,1,1,0,0,1,0,1,1,0,0,0]=>2
[1,1,1,0,0,1,1,0,0,0,1,0]=>1
[1,1,1,0,0,1,1,0,0,1,0,0]=>2
[1,1,1,0,0,1,1,0,1,0,0,0]=>2
[1,1,1,0,0,1,1,1,0,0,0,0]=>1
[1,1,1,0,1,0,0,0,1,0,1,0]=>3
[1,1,1,0,1,0,0,0,1,1,0,0]=>2
[1,1,1,0,1,0,0,1,0,0,1,0]=>3
[1,1,1,0,1,0,0,1,0,1,0,0]=>2
[1,1,1,0,1,0,0,1,1,0,0,0]=>2
[1,1,1,0,1,0,1,0,0,0,1,0]=>3
[1,1,1,0,1,0,1,0,0,1,0,0]=>2
[1,1,1,0,1,0,1,0,1,0,0,0]=>2
[1,1,1,0,1,0,1,1,0,0,0,0]=>2
[1,1,1,0,1,1,0,0,0,0,1,0]=>1
[1,1,1,0,1,1,0,0,0,1,0,0]=>2
[1,1,1,0,1,1,0,0,1,0,0,0]=>2
[1,1,1,0,1,1,0,1,0,0,0,0]=>2
[1,1,1,0,1,1,1,0,0,0,0,0]=>1
[1,1,1,1,0,0,0,0,1,0,1,0]=>2
[1,1,1,1,0,0,0,0,1,1,0,0]=>1
[1,1,1,1,0,0,0,1,0,0,1,0]=>2
[1,1,1,1,0,0,0,1,0,1,0,0]=>2
[1,1,1,1,0,0,0,1,1,0,0,0]=>1
[1,1,1,1,0,0,1,0,0,0,1,0]=>2
[1,1,1,1,0,0,1,0,0,1,0,0]=>2
[1,1,1,1,0,0,1,0,1,0,0,0]=>2
[1,1,1,1,0,0,1,1,0,0,0,0]=>1
[1,1,1,1,0,1,0,0,0,0,1,0]=>2
[1,1,1,1,0,1,0,0,0,1,0,0]=>2
[1,1,1,1,0,1,0,0,1,0,0,0]=>2
[1,1,1,1,0,1,0,1,0,0,0,0]=>2
[1,1,1,1,0,1,1,0,0,0,0,0]=>1
[1,1,1,1,1,0,0,0,0,0,1,0]=>1
[1,1,1,1,1,0,0,0,0,1,0,0]=>1
[1,1,1,1,1,0,0,0,1,0,0,0]=>1
[1,1,1,1,1,0,0,1,0,0,0,0]=>1
[1,1,1,1,1,0,1,0,0,0,0,0]=>1
[1,1,1,1,1,1,0,0,0,0,0,0]=>0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The maximal torsionfree index of an indecomposable non-projective module in the corresponding Nakayama algebra.
See http://www.findstat.org/DyckPaths/NakayamaAlgebras.
See http://www.findstat.org/DyckPaths/NakayamaAlgebras.
Code
DeclareOperation("IsNtorsionfree",[IsList]); InstallMethod(IsNtorsionfree, "for a representation of a quiver", [IsList],0,function(LIST) local A,M,n,CoRegA,temm23; A:=LIST[1]; M:=LIST[2]; n:=LIST[3]; CoRegA:=DirectSumOfQPAModules(IndecInjectiveModules(A)); temm23:=[]; for i in [0..n-1] do Append(temm23,[Size(ExtOverAlgebra(NthSyzygy(CoRegA,i),DTr(M))[2])]);od; return(Sum(temm23)); end); DeclareOperation("torsionfreeindex",[IsList]); InstallMethod(torsionfreeindex, "for a representation of a quiver", [IsList],0,function(LIST) local A,M,n,CoRegA,temm23,U,g; A:=LIST[1]; M:=LIST[2]; g:=LIST[3]; U:=Filtered([1..g],x->IsNtorsionfree([A,M,x])>0); return(Minimum(U)-1); end); DeclareOperation("torsionmax",[IsList]); InstallMethod(torsionmax, "for a representation of a quiver", [IsList],0,function(LIST) local A,M,n,CoRegA,temm23,simA,UU,g; A:=LIST[1]; g:=GlobalDimensionOfAlgebra(A,30); simA:=Filtered(SimpleModules(A),x->IsProjectiveModule(x)=false); UU:=[];for i in simA do Append(UU,[torsionfreeindex([A,i,g])]);od; return(Maximum(UU)); end); DeclareOperation("torsionmaxall",[IsList]); InstallMethod(torsionmaxall, "for a representation of a quiver", [IsList],0,function(LIST) local A,M,n,CoRegA,temm23,simA,UU,g,WW,WW2; A:=LIST[1]; g:=GlobalDimensionOfAlgebra(A,30); WW:=ARQuiverNak([A]); WW2:=Filtered(WW,x->IsProjectiveModule(x)=false); UU:=[];for i in WW2 do Append(UU,[torsionfreeindex([A,i,g])]);od; return(Maximum(UU)); end);
Created
Nov 24, 2018 at 17:05 by Rene Marczinzik
Updated
Nov 24, 2018 at 17:05 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!