Identifier
- St001299: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[1,0]=>1
[1,0,1,0]=>2
[1,1,0,0]=>1
[1,0,1,0,1,0]=>6
[1,0,1,1,0,0]=>2
[1,1,0,0,1,0]=>2
[1,1,0,1,0,0]=>2
[1,1,1,0,0,0]=>1
[1,0,1,0,1,0,1,0]=>24
[1,0,1,0,1,1,0,0]=>6
[1,0,1,1,0,0,1,0]=>4
[1,0,1,1,0,1,0,0]=>6
[1,0,1,1,1,0,0,0]=>2
[1,1,0,0,1,0,1,0]=>6
[1,1,0,0,1,1,0,0]=>2
[1,1,0,1,0,0,1,0]=>6
[1,1,0,1,0,1,0,0]=>6
[1,1,0,1,1,0,0,0]=>2
[1,1,1,0,0,0,1,0]=>2
[1,1,1,0,0,1,0,0]=>2
[1,1,1,0,1,0,0,0]=>2
[1,1,1,1,0,0,0,0]=>1
[1,0,1,0,1,0,1,0,1,0]=>120
[1,0,1,0,1,0,1,1,0,0]=>24
[1,0,1,0,1,1,0,0,1,0]=>12
[1,0,1,0,1,1,0,1,0,0]=>24
[1,0,1,0,1,1,1,0,0,0]=>6
[1,0,1,1,0,0,1,0,1,0]=>12
[1,0,1,1,0,0,1,1,0,0]=>4
[1,0,1,1,0,1,0,0,1,0]=>24
[1,0,1,1,0,1,0,1,0,0]=>24
[1,0,1,1,0,1,1,0,0,0]=>6
[1,0,1,1,1,0,0,0,1,0]=>4
[1,0,1,1,1,0,0,1,0,0]=>4
[1,0,1,1,1,0,1,0,0,0]=>6
[1,0,1,1,1,1,0,0,0,0]=>2
[1,1,0,0,1,0,1,0,1,0]=>24
[1,1,0,0,1,0,1,1,0,0]=>6
[1,1,0,0,1,1,0,0,1,0]=>4
[1,1,0,0,1,1,0,1,0,0]=>6
[1,1,0,0,1,1,1,0,0,0]=>2
[1,1,0,1,0,0,1,0,1,0]=>24
[1,1,0,1,0,0,1,1,0,0]=>6
[1,1,0,1,0,1,0,0,1,0]=>24
[1,1,0,1,0,1,0,1,0,0]=>18
[1,1,0,1,0,1,1,0,0,0]=>6
[1,1,0,1,1,0,0,0,1,0]=>4
[1,1,0,1,1,0,0,1,0,0]=>6
[1,1,0,1,1,0,1,0,0,0]=>6
[1,1,0,1,1,1,0,0,0,0]=>2
[1,1,1,0,0,0,1,0,1,0]=>6
[1,1,1,0,0,0,1,1,0,0]=>2
[1,1,1,0,0,1,0,0,1,0]=>6
[1,1,1,0,0,1,0,1,0,0]=>6
[1,1,1,0,0,1,1,0,0,0]=>2
[1,1,1,0,1,0,0,0,1,0]=>6
[1,1,1,0,1,0,0,1,0,0]=>6
[1,1,1,0,1,0,1,0,0,0]=>6
[1,1,1,0,1,1,0,0,0,0]=>2
[1,1,1,1,0,0,0,0,1,0]=>2
[1,1,1,1,0,0,0,1,0,0]=>2
[1,1,1,1,0,0,1,0,0,0]=>2
[1,1,1,1,0,1,0,0,0,0]=>2
[1,1,1,1,1,0,0,0,0,0]=>1
[1,0,1,0,1,0,1,0,1,0,1,0]=>720
[1,0,1,0,1,0,1,0,1,1,0,0]=>120
[1,0,1,0,1,0,1,1,0,0,1,0]=>48
[1,0,1,0,1,0,1,1,0,1,0,0]=>120
[1,0,1,0,1,0,1,1,1,0,0,0]=>24
[1,0,1,0,1,1,0,0,1,0,1,0]=>36
[1,0,1,0,1,1,0,0,1,1,0,0]=>12
[1,0,1,0,1,1,0,1,0,0,1,0]=>120
[1,0,1,0,1,1,0,1,0,1,0,0]=>120
[1,0,1,0,1,1,0,1,1,0,0,0]=>24
[1,0,1,0,1,1,1,0,0,0,1,0]=>12
[1,0,1,0,1,1,1,0,0,1,0,0]=>12
[1,0,1,0,1,1,1,0,1,0,0,0]=>24
[1,0,1,0,1,1,1,1,0,0,0,0]=>6
[1,0,1,1,0,0,1,0,1,0,1,0]=>48
[1,0,1,1,0,0,1,0,1,1,0,0]=>12
[1,0,1,1,0,0,1,1,0,0,1,0]=>8
[1,0,1,1,0,0,1,1,0,1,0,0]=>12
[1,0,1,1,0,0,1,1,1,0,0,0]=>4
[1,0,1,1,0,1,0,0,1,0,1,0]=>120
[1,0,1,1,0,1,0,0,1,1,0,0]=>24
[1,0,1,1,0,1,0,1,0,0,1,0]=>120
[1,0,1,1,0,1,0,1,0,1,0,0]=>72
[1,0,1,1,0,1,0,1,1,0,0,0]=>24
[1,0,1,1,0,1,1,0,0,0,1,0]=>12
[1,0,1,1,0,1,1,0,0,1,0,0]=>24
[1,0,1,1,0,1,1,0,1,0,0,0]=>24
[1,0,1,1,0,1,1,1,0,0,0,0]=>6
[1,0,1,1,1,0,0,0,1,0,1,0]=>12
[1,0,1,1,1,0,0,0,1,1,0,0]=>4
[1,0,1,1,1,0,0,1,0,0,1,0]=>12
[1,0,1,1,1,0,0,1,0,1,0,0]=>12
[1,0,1,1,1,0,0,1,1,0,0,0]=>4
[1,0,1,1,1,0,1,0,0,0,1,0]=>24
[1,0,1,1,1,0,1,0,0,1,0,0]=>24
[1,0,1,1,1,0,1,0,1,0,0,0]=>24
[1,0,1,1,1,0,1,1,0,0,0,0]=>6
[1,0,1,1,1,1,0,0,0,0,1,0]=>4
[1,0,1,1,1,1,0,0,0,1,0,0]=>4
[1,0,1,1,1,1,0,0,1,0,0,0]=>4
[1,0,1,1,1,1,0,1,0,0,0,0]=>6
[1,0,1,1,1,1,1,0,0,0,0,0]=>2
[1,1,0,0,1,0,1,0,1,0,1,0]=>120
[1,1,0,0,1,0,1,0,1,1,0,0]=>24
[1,1,0,0,1,0,1,1,0,0,1,0]=>12
[1,1,0,0,1,0,1,1,0,1,0,0]=>24
[1,1,0,0,1,0,1,1,1,0,0,0]=>6
[1,1,0,0,1,1,0,0,1,0,1,0]=>12
[1,1,0,0,1,1,0,0,1,1,0,0]=>4
[1,1,0,0,1,1,0,1,0,0,1,0]=>24
[1,1,0,0,1,1,0,1,0,1,0,0]=>24
[1,1,0,0,1,1,0,1,1,0,0,0]=>6
[1,1,0,0,1,1,1,0,0,0,1,0]=>4
[1,1,0,0,1,1,1,0,0,1,0,0]=>4
[1,1,0,0,1,1,1,0,1,0,0,0]=>6
[1,1,0,0,1,1,1,1,0,0,0,0]=>2
[1,1,0,1,0,0,1,0,1,0,1,0]=>120
[1,1,0,1,0,0,1,0,1,1,0,0]=>24
[1,1,0,1,0,0,1,1,0,0,1,0]=>12
[1,1,0,1,0,0,1,1,0,1,0,0]=>24
[1,1,0,1,0,0,1,1,1,0,0,0]=>6
[1,1,0,1,0,1,0,0,1,0,1,0]=>120
[1,1,0,1,0,1,0,0,1,1,0,0]=>24
[1,1,0,1,0,1,0,1,0,0,1,0]=>72
[1,1,0,1,0,1,0,1,0,1,0,0]=>72
[1,1,0,1,0,1,0,1,1,0,0,0]=>18
[1,1,0,1,0,1,1,0,0,0,1,0]=>12
[1,1,0,1,0,1,1,0,0,1,0,0]=>24
[1,1,0,1,0,1,1,0,1,0,0,0]=>18
[1,1,0,1,0,1,1,1,0,0,0,0]=>6
[1,1,0,1,1,0,0,0,1,0,1,0]=>12
[1,1,0,1,1,0,0,0,1,1,0,0]=>4
[1,1,0,1,1,0,0,1,0,0,1,0]=>24
[1,1,0,1,1,0,0,1,0,1,0,0]=>24
[1,1,0,1,1,0,0,1,1,0,0,0]=>6
[1,1,0,1,1,0,1,0,0,0,1,0]=>24
[1,1,0,1,1,0,1,0,0,1,0,0]=>24
[1,1,0,1,1,0,1,0,1,0,0,0]=>18
[1,1,0,1,1,0,1,1,0,0,0,0]=>6
[1,1,0,1,1,1,0,0,0,0,1,0]=>4
[1,1,0,1,1,1,0,0,0,1,0,0]=>4
[1,1,0,1,1,1,0,0,1,0,0,0]=>6
[1,1,0,1,1,1,0,1,0,0,0,0]=>6
[1,1,0,1,1,1,1,0,0,0,0,0]=>2
[1,1,1,0,0,0,1,0,1,0,1,0]=>24
[1,1,1,0,0,0,1,0,1,1,0,0]=>6
[1,1,1,0,0,0,1,1,0,0,1,0]=>4
[1,1,1,0,0,0,1,1,0,1,0,0]=>6
[1,1,1,0,0,0,1,1,1,0,0,0]=>2
[1,1,1,0,0,1,0,0,1,0,1,0]=>24
[1,1,1,0,0,1,0,0,1,1,0,0]=>6
[1,1,1,0,0,1,0,1,0,0,1,0]=>24
[1,1,1,0,0,1,0,1,0,1,0,0]=>18
[1,1,1,0,0,1,0,1,1,0,0,0]=>6
[1,1,1,0,0,1,1,0,0,0,1,0]=>4
[1,1,1,0,0,1,1,0,0,1,0,0]=>6
[1,1,1,0,0,1,1,0,1,0,0,0]=>6
[1,1,1,0,0,1,1,1,0,0,0,0]=>2
[1,1,1,0,1,0,0,0,1,0,1,0]=>24
[1,1,1,0,1,0,0,0,1,1,0,0]=>6
[1,1,1,0,1,0,0,1,0,0,1,0]=>24
[1,1,1,0,1,0,0,1,0,1,0,0]=>18
[1,1,1,0,1,0,0,1,1,0,0,0]=>6
[1,1,1,0,1,0,1,0,0,0,1,0]=>24
[1,1,1,0,1,0,1,0,0,1,0,0]=>18
[1,1,1,0,1,0,1,0,1,0,0,0]=>18
[1,1,1,0,1,0,1,1,0,0,0,0]=>6
[1,1,1,0,1,1,0,0,0,0,1,0]=>4
[1,1,1,0,1,1,0,0,0,1,0,0]=>6
[1,1,1,0,1,1,0,0,1,0,0,0]=>6
[1,1,1,0,1,1,0,1,0,0,0,0]=>6
[1,1,1,0,1,1,1,0,0,0,0,0]=>2
[1,1,1,1,0,0,0,0,1,0,1,0]=>6
[1,1,1,1,0,0,0,0,1,1,0,0]=>2
[1,1,1,1,0,0,0,1,0,0,1,0]=>6
[1,1,1,1,0,0,0,1,0,1,0,0]=>6
[1,1,1,1,0,0,0,1,1,0,0,0]=>2
[1,1,1,1,0,0,1,0,0,0,1,0]=>6
[1,1,1,1,0,0,1,0,0,1,0,0]=>6
[1,1,1,1,0,0,1,0,1,0,0,0]=>6
[1,1,1,1,0,0,1,1,0,0,0,0]=>2
[1,1,1,1,0,1,0,0,0,0,1,0]=>6
[1,1,1,1,0,1,0,0,0,1,0,0]=>6
[1,1,1,1,0,1,0,0,1,0,0,0]=>6
[1,1,1,1,0,1,0,1,0,0,0,0]=>6
[1,1,1,1,0,1,1,0,0,0,0,0]=>2
[1,1,1,1,1,0,0,0,0,0,1,0]=>2
[1,1,1,1,1,0,0,0,0,1,0,0]=>2
[1,1,1,1,1,0,0,0,1,0,0,0]=>2
[1,1,1,1,1,0,0,1,0,0,0,0]=>2
[1,1,1,1,1,0,1,0,0,0,0,0]=>2
[1,1,1,1,1,1,0,0,0,0,0,0]=>1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The product of all non-zero projective dimensions of simple modules of the corresponding Nakayama algebra.
Code
DeclareOperation("productpdsim",[IsList]); InstallMethod(productpdsim, "for a representation of a quiver", [IsList],0,function(LIST) local A,simA,U; A:=LIST[1]; simA:=Filtered(SimpleModules(A),x->IsProjectiveModule(x)=false); U:=[];for i in simA do Append(U,[ProjDimensionOfModule(i,110)]);od; return(Product(U)); end);
Created
Dec 05, 2018 at 13:45 by Rene Marczinzik
Updated
Dec 05, 2018 at 13:45 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!