Identifier
- St001313: Binary words ⟶ ℤ
Values
=>
0=>1
1=>1
00=>1
01=>2
10=>1
11=>1
000=>1
001=>3
010=>2
011=>3
100=>1
101=>2
110=>1
111=>1
0000=>1
0001=>4
0010=>3
0011=>6
0100=>2
0101=>5
0110=>3
0111=>4
1000=>1
1001=>3
1010=>2
1011=>3
1100=>1
1101=>2
1110=>1
1111=>1
00000=>1
00001=>5
00010=>4
00011=>10
00100=>3
00101=>9
00110=>6
00111=>10
01000=>2
01001=>7
01010=>5
01011=>9
01100=>3
01101=>7
01110=>4
01111=>5
10000=>1
10001=>4
10010=>3
10011=>6
10100=>2
10101=>5
10110=>3
10111=>4
11000=>1
11001=>3
11010=>2
11011=>3
11100=>1
11101=>2
11110=>1
11111=>1
000000=>1
000001=>6
000010=>5
000011=>15
000100=>4
000101=>14
000110=>10
000111=>20
001000=>3
001001=>12
001010=>9
001011=>19
001100=>6
001101=>16
001110=>10
001111=>15
010000=>2
010001=>9
010010=>7
010011=>16
010100=>5
010101=>14
010110=>9
010111=>14
011000=>3
011001=>10
011010=>7
011011=>12
011100=>4
011101=>9
011110=>5
011111=>6
100000=>1
100001=>5
100010=>4
100011=>10
100100=>3
100101=>9
100110=>6
100111=>10
101000=>2
101001=>7
101010=>5
101011=>9
101100=>3
101101=>7
101110=>4
101111=>5
110000=>1
110001=>4
110010=>3
110011=>6
110100=>2
110101=>5
110110=>3
110111=>4
111000=>1
111001=>3
111010=>2
111011=>3
111100=>1
111101=>2
111110=>1
111111=>1
0000000=>1
0000001=>7
0000010=>6
0000011=>21
0000100=>5
0000101=>20
0000110=>15
0000111=>35
0001000=>4
0001001=>18
0001010=>14
0001011=>34
0001100=>10
0001101=>30
0001110=>20
0001111=>35
0010000=>3
0010001=>15
0010010=>12
0010011=>31
0010100=>9
0010101=>28
0010110=>19
0010111=>34
0011000=>6
0011001=>22
0011010=>16
0011011=>31
0011100=>10
0011101=>25
0011110=>15
0011111=>21
0100000=>2
0100001=>11
0100010=>9
0100011=>25
0100100=>7
0100101=>23
0100110=>16
0100111=>30
0101000=>5
0101001=>19
0101010=>14
0101011=>28
0101100=>9
0101101=>23
0101110=>14
0101111=>20
0110000=>3
0110001=>13
0110010=>10
0110011=>22
0110100=>7
0110101=>19
0110110=>12
0110111=>18
0111000=>4
0111001=>13
0111010=>9
0111011=>15
0111100=>5
0111101=>11
0111110=>6
0111111=>7
1000000=>1
1000001=>6
1000010=>5
1000011=>15
1000100=>4
1000101=>14
1000110=>10
1000111=>20
1001000=>3
1001001=>12
1001010=>9
1001011=>19
1001100=>6
1001101=>16
1001110=>10
1001111=>15
1010000=>2
1010001=>9
1010010=>7
1010011=>16
1010100=>5
1010101=>14
1010110=>9
1010111=>14
1011000=>3
1011001=>10
1011010=>7
1011011=>12
1011100=>4
1011101=>9
1011110=>5
1011111=>6
1100000=>1
1100001=>5
1100010=>4
1100011=>10
1100100=>3
1100101=>9
1100110=>6
1100111=>10
1101000=>2
1101001=>7
1101010=>5
1101011=>9
1101100=>3
1101101=>7
1101110=>4
1101111=>5
1110000=>1
1110001=>4
1110010=>3
1110011=>6
1110100=>2
1110101=>5
1110110=>3
1110111=>4
1111000=>1
1111001=>3
1111010=>2
1111011=>3
1111100=>1
1111101=>2
1111110=>1
1111111=>1
00000000=>1
00000001=>8
00000010=>7
00000011=>28
00000100=>6
00000101=>27
00000110=>21
00000111=>56
00001000=>5
00001001=>25
00001010=>20
00001011=>55
00001100=>15
00001101=>50
00001110=>35
00001111=>70
00010000=>4
00010001=>22
00010010=>18
00010011=>52
00010100=>14
00010101=>48
00010110=>34
00010111=>69
00011000=>10
00011001=>40
00011010=>30
00011011=>65
00011100=>20
00011101=>55
00011110=>35
00011111=>56
00100000=>3
00100001=>18
00100010=>15
00100011=>46
00100100=>12
00100101=>43
00100110=>31
00100111=>65
00101000=>9
00101001=>37
00101010=>28
00101011=>62
00101100=>19
00101101=>53
00101110=>34
00101111=>55
00110000=>6
00110001=>28
00110010=>22
00110011=>53
00110100=>16
00110101=>47
00110110=>31
00110111=>52
00111000=>10
00111001=>35
00111010=>25
00111011=>46
00111100=>15
00111101=>36
00111110=>21
00111111=>28
01000000=>2
01000001=>13
01000010=>11
01000011=>36
01000100=>9
01000101=>34
01000110=>25
01000111=>55
01001000=>7
01001001=>30
01001010=>23
01001011=>53
01001100=>16
01001101=>46
01001110=>30
01001111=>50
01010000=>5
01010001=>24
01010010=>19
01010011=>47
01010100=>14
01010101=>42
01010110=>28
01010111=>48
01011000=>9
01011001=>32
01011010=>23
01011011=>43
01011100=>14
01011101=>34
01011110=>20
01011111=>27
01100000=>3
01100001=>16
01100010=>13
01100011=>35
01100100=>10
01100101=>32
01100110=>22
01100111=>40
01101000=>7
01101001=>26
01101010=>19
01101011=>37
01101100=>12
01101101=>30
01101110=>18
01101111=>25
01110000=>4
01110001=>17
01110010=>13
01110011=>28
01110100=>9
01110101=>24
01110110=>15
01110111=>22
01111000=>5
01111001=>16
01111010=>11
01111011=>18
01111100=>6
01111101=>13
01111110=>7
01111111=>8
10000000=>1
10000001=>7
10000010=>6
10000011=>21
10000100=>5
10000101=>20
10000110=>15
10000111=>35
10001000=>4
10001001=>18
10001010=>14
10001011=>34
10001100=>10
10001101=>30
10001110=>20
10001111=>35
10010000=>3
10010001=>15
10010010=>12
10010011=>31
10010100=>9
10010101=>28
10010110=>19
10010111=>34
10011000=>6
10011001=>22
10011010=>16
10011011=>31
10011100=>10
10011101=>25
10011110=>15
10011111=>21
10100000=>2
10100001=>11
10100010=>9
10100011=>25
10100100=>7
10100101=>23
10100110=>16
10100111=>30
10101000=>5
10101001=>19
10101010=>14
10101011=>28
10101100=>9
10101101=>23
10101110=>14
10101111=>20
10110000=>3
10110001=>13
10110010=>10
10110011=>22
10110100=>7
10110101=>19
10110110=>12
10110111=>18
10111000=>4
10111001=>13
10111010=>9
10111011=>15
10111100=>5
10111101=>11
10111110=>6
10111111=>7
11000000=>1
11000001=>6
11000010=>5
11000011=>15
11000100=>4
11000101=>14
11000110=>10
11000111=>20
11001000=>3
11001001=>12
11001010=>9
11001011=>19
11001100=>6
11001101=>16
11001110=>10
11001111=>15
11010000=>2
11010001=>9
11010010=>7
11010011=>16
11010100=>5
11010101=>14
11010110=>9
11010111=>14
11011000=>3
11011001=>10
11011010=>7
11011011=>12
11011100=>4
11011101=>9
11011110=>5
11011111=>6
11100000=>1
11100001=>5
11100010=>4
11100011=>10
11100100=>3
11100101=>9
11100110=>6
11100111=>10
11101000=>2
11101001=>7
11101010=>5
11101011=>9
11101100=>3
11101101=>7
11101110=>4
11101111=>5
11110000=>1
11110001=>4
11110010=>3
11110011=>6
11110100=>2
11110101=>5
11110110=>3
11110111=>4
11111000=>1
11111001=>3
11111010=>2
11111011=>3
11111100=>1
11111101=>2
11111110=>1
11111111=>1
000000000=>1
000000001=>9
000000010=>8
000000011=>36
000000100=>7
000000101=>35
000000110=>28
000000111=>84
000001000=>6
000001001=>33
000001010=>27
000001011=>83
000001100=>21
000001101=>77
000001110=>56
000001111=>126
000010000=>5
000010001=>30
000010010=>25
000010011=>80
000010100=>20
000010101=>75
000010110=>55
000010111=>125
000011000=>15
000011001=>65
000011010=>50
000011011=>120
000011100=>35
000011101=>105
000011110=>70
000011111=>126
000100000=>4
000100001=>26
000100010=>22
000100011=>74
000100100=>18
000100101=>70
000100110=>52
000100111=>121
000101000=>14
000101001=>62
000101010=>48
000101011=>117
000101100=>34
000101101=>103
000101110=>69
000101111=>125
000110000=>10
000110001=>50
000110010=>40
000110011=>105
000110100=>30
000110101=>95
000110110=>65
000110111=>121
000111000=>20
000111001=>75
000111010=>55
000111011=>111
000111100=>35
000111101=>91
000111110=>56
000111111=>84
001000000=>3
001000001=>21
001000010=>18
001000011=>64
001000100=>15
001000101=>61
001000110=>46
001000111=>111
001001000=>12
001001001=>55
001001010=>43
001001011=>108
001001100=>31
001001101=>96
001001110=>65
001001111=>120
001010000=>9
001010001=>46
001010010=>37
001010011=>99
001010100=>28
001010101=>90
001010110=>62
001010111=>117
001011000=>19
001011001=>72
001011010=>53
001011011=>108
001011100=>34
001011101=>89
001011110=>55
001011111=>83
001100000=>6
001100001=>34
001100010=>28
001100011=>81
001100100=>22
001100101=>75
001100110=>53
001100111=>105
001101000=>16
001101001=>63
001101010=>47
001101011=>99
001101100=>31
001101101=>83
001101110=>52
001101111=>80
001110000=>10
001110001=>45
001110010=>35
001110011=>81
001110100=>25
001110101=>71
001110110=>46
001110111=>74
001111000=>15
001111001=>51
001111010=>36
001111011=>64
001111100=>21
001111101=>49
001111110=>28
001111111=>36
010000000=>2
010000001=>15
010000010=>13
010000011=>49
010000100=>11
010000101=>47
010000110=>36
010000111=>91
010001000=>9
010001001=>43
010001010=>34
010001011=>89
010001100=>25
010001101=>80
010001110=>55
010001111=>105
010010000=>7
010010001=>37
010010010=>30
010010011=>83
010010100=>23
010010101=>76
010010110=>53
010010111=>103
010011000=>16
010011001=>62
010011010=>46
010011011=>96
010011100=>30
010011101=>80
010011110=>50
010011111=>77
010100000=>5
010100001=>29
010100010=>24
010100011=>71
010100100=>19
010100101=>66
010100110=>47
010100111=>95
010101000=>14
010101001=>56
010101010=>42
010101011=>90
010101100=>28
010101101=>76
010101110=>48
010101111=>75
010110000=>9
010110001=>41
010110010=>32
010110011=>75
010110100=>23
010110101=>66
010110110=>43
010110111=>70
010111000=>14
010111001=>48
010111010=>34
010111011=>61
010111100=>20
010111101=>47
010111110=>27
010111111=>35
011000000=>3
011000001=>19
011000010=>16
011000011=>51
011000100=>13
011000101=>48
011000110=>35
011000111=>75
011001000=>10
011001001=>42
011001010=>32
011001011=>72
011001100=>22
011001101=>62
011001110=>40
011001111=>65
011010000=>7
011010001=>33
011010010=>26
011010011=>63
011010100=>19
011010101=>56
011010110=>37
011010111=>62
011011000=>12
011011001=>42
011011010=>30
011011011=>55
011011100=>18
011011101=>43
011011110=>25
011011111=>33
011100000=>4
011100001=>21
011100010=>17
011100011=>45
011100100=>13
011100101=>41
011100110=>28
011100111=>50
011101000=>9
011101001=>33
011101010=>24
011101011=>46
011101100=>15
011101101=>37
011101110=>22
011101111=>30
011110000=>5
011110001=>21
011110010=>16
011110011=>34
011110100=>11
011110101=>29
011110110=>18
011110111=>26
011111000=>6
011111001=>19
011111010=>13
011111011=>21
011111100=>7
011111101=>15
011111110=>8
011111111=>9
100000000=>1
100000001=>8
100000010=>7
100000011=>28
100000100=>6
100000101=>27
100000110=>21
100000111=>56
100001000=>5
100001001=>25
100001010=>20
100001011=>55
100001100=>15
100001101=>50
100001110=>35
100001111=>70
100010000=>4
100010001=>22
100010010=>18
100010011=>52
100010100=>14
100010101=>48
100010110=>34
100010111=>69
100011000=>10
100011001=>40
100011010=>30
100011011=>65
100011100=>20
100011101=>55
100011110=>35
100011111=>56
100100000=>3
100100001=>18
100100010=>15
100100011=>46
100100100=>12
100100101=>43
100100110=>31
100100111=>65
100101000=>9
100101001=>37
100101010=>28
100101011=>62
100101100=>19
100101101=>53
100101110=>34
100101111=>55
100110000=>6
100110001=>28
100110010=>22
100110011=>53
100110100=>16
100110101=>47
100110110=>31
100110111=>52
100111000=>10
100111001=>35
100111010=>25
100111011=>46
100111100=>15
100111101=>36
100111110=>21
100111111=>28
101000000=>2
101000001=>13
101000010=>11
101000011=>36
101000100=>9
101000101=>34
101000110=>25
101000111=>55
101001000=>7
101001001=>30
101001010=>23
101001011=>53
101001100=>16
101001101=>46
101001110=>30
101001111=>50
101010000=>5
101010001=>24
101010010=>19
101010011=>47
101010100=>14
101010101=>42
101010110=>28
101010111=>48
101011000=>9
101011001=>32
101011010=>23
101011011=>43
101011100=>14
101011101=>34
101011110=>20
101011111=>27
101100000=>3
101100001=>16
101100010=>13
101100011=>35
101100100=>10
101100101=>32
101100110=>22
101100111=>40
101101000=>7
101101001=>26
101101010=>19
101101011=>37
101101100=>12
101101101=>30
101101110=>18
101101111=>25
101110000=>4
101110001=>17
101110010=>13
101110011=>28
101110100=>9
101110101=>24
101110110=>15
101110111=>22
101111000=>5
101111001=>16
101111010=>11
101111011=>18
101111100=>6
101111101=>13
101111110=>7
101111111=>8
110000000=>1
110000001=>7
110000010=>6
110000011=>21
110000100=>5
110000101=>20
110000110=>15
110000111=>35
110001000=>4
110001001=>18
110001010=>14
110001011=>34
110001100=>10
110001101=>30
110001110=>20
110001111=>35
110010000=>3
110010001=>15
110010010=>12
110010011=>31
110010100=>9
110010101=>28
110010110=>19
110010111=>34
110011000=>6
110011001=>22
110011010=>16
110011011=>31
110011100=>10
110011101=>25
110011110=>15
110011111=>21
110100000=>2
110100001=>11
110100010=>9
110100011=>25
110100100=>7
110100101=>23
110100110=>16
110100111=>30
110101000=>5
110101001=>19
110101010=>14
110101011=>28
110101100=>9
110101101=>23
110101110=>14
110101111=>20
110110000=>3
110110001=>13
110110010=>10
110110011=>22
110110100=>7
110110101=>19
110110110=>12
110110111=>18
110111000=>4
110111001=>13
110111010=>9
110111011=>15
110111100=>5
110111101=>11
110111110=>6
110111111=>7
111000000=>1
111000001=>6
111000010=>5
111000011=>15
111000100=>4
111000101=>14
111000110=>10
111000111=>20
111001000=>3
111001001=>12
111001010=>9
111001011=>19
111001100=>6
111001101=>16
111001110=>10
111001111=>15
111010000=>2
111010001=>9
111010010=>7
111010011=>16
111010100=>5
111010101=>14
111010110=>9
111010111=>14
111011000=>3
111011001=>10
111011010=>7
111011011=>12
111011100=>4
111011101=>9
111011110=>5
111011111=>6
111100000=>1
111100001=>5
111100010=>4
111100011=>10
111100100=>3
111100101=>9
111100110=>6
111100111=>10
111101000=>2
111101001=>7
111101010=>5
111101011=>9
111101100=>3
111101101=>7
111101110=>4
111101111=>5
111110000=>1
111110001=>4
111110010=>3
111110011=>6
111110100=>2
111110101=>5
111110110=>3
111110111=>4
111111000=>1
111111001=>3
111111010=>2
111111011=>3
111111100=>1
111111101=>2
111111110=>1
111111111=>1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of Dyck paths above the lattice path given by a binary word.
One may treat a binary word as a lattice path starting at the origin and treating $1$'s as steps $(1,0)$ and $0$'s as steps $(0,1)$. Given a binary word $w$, this statistic counts the number of lattice paths from the origin to the same endpoint as $w$ that stay weakly above $w$.
See St001312Number of parabolic noncrossing partitions indexed by the composition. for this statistic on compositions treated as bounce paths.
One may treat a binary word as a lattice path starting at the origin and treating $1$'s as steps $(1,0)$ and $0$'s as steps $(0,1)$. Given a binary word $w$, this statistic counts the number of lattice paths from the origin to the same endpoint as $w$ that stay weakly above $w$.
See St001312Number of parabolic noncrossing partitions indexed by the composition. for this statistic on compositions treated as bounce paths.
Code
def lattice_paths_above_boundary(B): B = list(B) if sum(B) == 0: return [B] else: paths = [ B[:1] + p for p in lattice_paths_above_boundary(B[1:]) ] if B[0] == 0: i = B.index(1) B = B[:i] + B[i+1:] paths.extend( [ [1] + p for p in lattice_paths_above_boundary(B) ] ) return paths def statistic(w): return len(lattice_paths_above_boundary(w))
Created
Dec 12, 2018 at 14:54 by Christian Stump
Updated
Dec 12, 2018 at 14:54 by Christian Stump
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!