edit this statistic or download as text // json
Identifier
Values
=>
Cc0005;cc-rep
[1,0]=>0 [1,0,1,0]=>0 [1,1,0,0]=>0 [1,0,1,0,1,0]=>0 [1,0,1,1,0,0]=>0 [1,1,0,0,1,0]=>0 [1,1,0,1,0,0]=>1 [1,1,1,0,0,0]=>0 [1,0,1,0,1,0,1,0]=>0 [1,0,1,0,1,1,0,0]=>0 [1,0,1,1,0,0,1,0]=>0 [1,0,1,1,0,1,0,0]=>1 [1,0,1,1,1,0,0,0]=>0 [1,1,0,0,1,0,1,0]=>0 [1,1,0,0,1,1,0,0]=>0 [1,1,0,1,0,0,1,0]=>1 [1,1,0,1,0,1,0,0]=>2 [1,1,0,1,1,0,0,0]=>2 [1,1,1,0,0,0,1,0]=>0 [1,1,1,0,0,1,0,0]=>2 [1,1,1,0,1,0,0,0]=>2 [1,1,1,1,0,0,0,0]=>0 [1,0,1,0,1,0,1,0,1,0]=>0 [1,0,1,0,1,0,1,1,0,0]=>0 [1,0,1,0,1,1,0,0,1,0]=>0 [1,0,1,0,1,1,0,1,0,0]=>1 [1,0,1,0,1,1,1,0,0,0]=>0 [1,0,1,1,0,0,1,0,1,0]=>0 [1,0,1,1,0,0,1,1,0,0]=>0 [1,0,1,1,0,1,0,0,1,0]=>1 [1,0,1,1,0,1,0,1,0,0]=>2 [1,0,1,1,0,1,1,0,0,0]=>2 [1,0,1,1,1,0,0,0,1,0]=>0 [1,0,1,1,1,0,0,1,0,0]=>2 [1,0,1,1,1,0,1,0,0,0]=>2 [1,0,1,1,1,1,0,0,0,0]=>0 [1,1,0,0,1,0,1,0,1,0]=>0 [1,1,0,0,1,0,1,1,0,0]=>0 [1,1,0,0,1,1,0,0,1,0]=>0 [1,1,0,0,1,1,0,1,0,0]=>1 [1,1,0,0,1,1,1,0,0,0]=>0 [1,1,0,1,0,0,1,0,1,0]=>1 [1,1,0,1,0,0,1,1,0,0]=>1 [1,1,0,1,0,1,0,0,1,0]=>2 [1,1,0,1,0,1,0,1,0,0]=>3 [1,1,0,1,0,1,1,0,0,0]=>3 [1,1,0,1,1,0,0,0,1,0]=>2 [1,1,0,1,1,0,0,1,0,0]=>4 [1,1,0,1,1,0,1,0,0,0]=>5 [1,1,0,1,1,1,0,0,0,0]=>3 [1,1,1,0,0,0,1,0,1,0]=>0 [1,1,1,0,0,0,1,1,0,0]=>0 [1,1,1,0,0,1,0,0,1,0]=>2 [1,1,1,0,0,1,0,1,0,0]=>3 [1,1,1,0,0,1,1,0,0,0]=>4 [1,1,1,0,1,0,0,0,1,0]=>2 [1,1,1,0,1,0,0,1,0,0]=>5 [1,1,1,0,1,0,1,0,0,0]=>6 [1,1,1,0,1,1,0,0,0,0]=>5 [1,1,1,1,0,0,0,0,1,0]=>0 [1,1,1,1,0,0,0,1,0,0]=>3 [1,1,1,1,0,0,1,0,0,0]=>5 [1,1,1,1,0,1,0,0,0,0]=>3 [1,1,1,1,1,0,0,0,0,0]=>0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra.
Code

DeclareOperation("TiltingModulesnosim",[IsList]);

InstallMethod(TiltingModulesnosim, "for a representation of a quiver", [IsList],0,function(LIST)

local A,g,L,LL,r,subsets1,subsets2,W,projA,prinjA,WW,priA,i;

A:=LIST[1];
g:=GlobalDimensionOfAlgebra(A,30);
L:=Filtered(ARQuiverNak([A]),x->Dimension(x)>1);
LL:=Filtered(L,x->(IsProjectiveModule(x)=false or IsInjectiveModule(x)=false));
r:=Size(SimpleModules(A))-(Size(L)-Size(LL));
subsets1:=Combinations([1..Length(LL)],r);subsets2:=List(subsets1,x->LL{x});
W:=Filtered(subsets2,x->N_RigidModule(DirectSumOfQPAModules(x),g)=true);
projA:=IndecProjectiveModules(A);prinjA:=Filtered(projA,x->IsInjectiveModule(x)=true);priA:=DirectSumOfQPAModules(prinjA);
WW:=[];for i in W do Append(WW,[DirectSumOfQPAModules([priA,DirectSumOfQPAModules(i)])]);od;


return(WW);

end);
Created
Dec 02, 2018 at 23:25 by Rene Marczinzik
Updated
Dec 02, 2018 at 23:25 by Rene Marczinzik