edit this statistic or download as text // json
Identifier
Values
=>
Cc0002;cc-rep
[1]=>1 [2]=>1 [1,1]=>1 [3]=>0 [2,1]=>1 [1,1,1]=>3 [4]=>1 [3,1]=>0 [2,2]=>1 [2,1,1]=>1 [1,1,1,1]=>9 [5]=>1 [4,1]=>1 [3,2]=>0 [3,1,1]=>0 [2,2,1]=>1 [2,1,1,1]=>3 [1,1,1,1,1]=>21 [6]=>0 [5,1]=>1 [4,2]=>1 [4,1,1]=>1 [3,3]=>0 [3,2,1]=>0 [3,1,1,1]=>0 [2,2,2]=>9 [2,2,1,1]=>1 [2,1,1,1,1]=>9 [1,1,1,1,1,1]=>81 [7]=>1 [6,1]=>0 [5,2]=>1 [5,1,1]=>1 [4,3]=>0 [4,2,1]=>1 [4,1,1,1]=>3 [3,3,1]=>0 [3,2,2]=>0 [3,2,1,1]=>0 [3,1,1,1,1]=>0 [2,2,2,1]=>9 [2,2,1,1,1]=>3 [2,1,1,1,1,1]=>21 [1,1,1,1,1,1,1]=>351 [8]=>1 [7,1]=>1 [6,2]=>0 [6,1,1]=>0 [5,3]=>0 [5,2,1]=>1 [5,1,1,1]=>3 [4,4]=>1 [4,3,1]=>0 [4,2,2]=>1 [4,2,1,1]=>1 [4,1,1,1,1]=>9 [3,3,2]=>0 [3,3,1,1]=>0 [3,2,2,1]=>0 [3,2,1,1,1]=>0 [3,1,1,1,1,1]=>0 [2,2,2,2]=>33 [2,2,2,1,1]=>9 [2,2,1,1,1,1]=>9 [2,1,1,1,1,1,1]=>81 [1,1,1,1,1,1,1,1]=>1233 [9]=>0 [8,1]=>1 [7,2]=>1 [7,1,1]=>1 [6,3]=>0 [6,2,1]=>0 [6,1,1,1]=>0 [5,4]=>1 [5,3,1]=>0 [5,2,2]=>1 [5,2,1,1]=>1 [5,1,1,1,1]=>9 [4,4,1]=>1 [4,3,2]=>0 [4,3,1,1]=>0 [4,2,2,1]=>1 [4,2,1,1,1]=>3 [4,1,1,1,1,1]=>21 [3,3,3]=>18 [3,3,2,1]=>0 [3,3,1,1,1]=>0 [3,2,2,2]=>0 [3,2,2,1,1]=>0 [3,2,1,1,1,1]=>0 [3,1,1,1,1,1,1]=>0 [2,2,2,2,1]=>33 [2,2,2,1,1,1]=>27 [2,2,1,1,1,1,1]=>21 [2,1,1,1,1,1,1,1]=>351 [1,1,1,1,1,1,1,1,1]=>5769
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of permutations whose cube equals a fixed permutation of given cycle type.
For example, the permutation $\pi=412365$ has cycle type $(4,2)$ and $234165$ is the unique permutation whose cube is $\pi$.
Code
@cached_function
def statistic_dict(n, k):
    d = {}
    for pi in Permutations(n):
        sigma = pi^k
        d[sigma] = d.get(sigma, 0) + 1
    return d

def statistic(la):
    n = la.size()
    d = statistic_dict(n, 3)
    sigma = standard_permutation(la)
    return d.get(sigma, 0)

Created
Mar 15, 2019 at 20:50 by Martin Rubey
Updated
Mar 15, 2019 at 20:50 by Martin Rubey