edit this statistic or download as text // json
Identifier
Values
=>
Cc0005;cc-rep
[1,0,1,0]=>0 [1,1,0,0]=>1 [1,0,1,0,1,0]=>0 [1,0,1,1,0,0]=>1 [1,1,0,0,1,0]=>1 [1,1,0,1,0,0]=>2 [1,1,1,0,0,0]=>1 [1,0,1,0,1,0,1,0]=>0 [1,0,1,0,1,1,0,0]=>1 [1,0,1,1,0,0,1,0]=>1 [1,0,1,1,0,1,0,0]=>2 [1,0,1,1,1,0,0,0]=>1 [1,1,0,0,1,0,1,0]=>1 [1,1,0,0,1,1,0,0]=>1 [1,1,0,1,0,0,1,0]=>2 [1,1,0,1,0,1,0,0]=>3 [1,1,0,1,1,0,0,0]=>2 [1,1,1,0,0,0,1,0]=>1 [1,1,1,0,0,1,0,0]=>2 [1,1,1,0,1,0,0,0]=>1 [1,1,1,1,0,0,0,0]=>1 [1,0,1,0,1,0,1,0,1,0]=>0 [1,0,1,0,1,0,1,1,0,0]=>1 [1,0,1,0,1,1,0,0,1,0]=>1 [1,0,1,0,1,1,0,1,0,0]=>2 [1,0,1,0,1,1,1,0,0,0]=>1 [1,0,1,1,0,0,1,0,1,0]=>1 [1,0,1,1,0,0,1,1,0,0]=>1 [1,0,1,1,0,1,0,0,1,0]=>2 [1,0,1,1,0,1,0,1,0,0]=>3 [1,0,1,1,0,1,1,0,0,0]=>2 [1,0,1,1,1,0,0,0,1,0]=>1 [1,0,1,1,1,0,0,1,0,0]=>2 [1,0,1,1,1,0,1,0,0,0]=>1 [1,0,1,1,1,1,0,0,0,0]=>1 [1,1,0,0,1,0,1,0,1,0]=>1 [1,1,0,0,1,0,1,1,0,0]=>1 [1,1,0,0,1,1,0,0,1,0]=>1 [1,1,0,0,1,1,0,1,0,0]=>2 [1,1,0,0,1,1,1,0,0,0]=>1 [1,1,0,1,0,0,1,0,1,0]=>2 [1,1,0,1,0,0,1,1,0,0]=>2 [1,1,0,1,0,1,0,0,1,0]=>3 [1,1,0,1,0,1,0,1,0,0]=>4 [1,1,0,1,0,1,1,0,0,0]=>3 [1,1,0,1,1,0,0,0,1,0]=>2 [1,1,0,1,1,0,0,1,0,0]=>2 [1,1,0,1,1,0,1,0,0,0]=>2 [1,1,0,1,1,1,0,0,0,0]=>2 [1,1,1,0,0,0,1,0,1,0]=>1 [1,1,1,0,0,0,1,1,0,0]=>1 [1,1,1,0,0,1,0,0,1,0]=>2 [1,1,1,0,0,1,0,1,0,0]=>3 [1,1,1,0,0,1,1,0,0,0]=>2 [1,1,1,0,1,0,0,0,1,0]=>1 [1,1,1,0,1,0,0,1,0,0]=>2 [1,1,1,0,1,0,1,0,0,0]=>1 [1,1,1,0,1,1,0,0,0,0]=>1 [1,1,1,1,0,0,0,0,1,0]=>1 [1,1,1,1,0,0,0,1,0,0]=>2 [1,1,1,1,0,0,1,0,0,0]=>1 [1,1,1,1,0,1,0,0,0,0]=>1 [1,1,1,1,1,0,0,0,0,0]=>1 [1,0,1,0,1,0,1,0,1,0,1,0]=>0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path.
The modified algebra B is obtained from the stable Auslander algebra kQ/I by deleting all relations which contain walks of length at least three (conjectural this step of deletion is not necessary as the stable higher Auslander algebras might be quadratic) and taking as B then the algebra kQ^(op)/J when J is the quadratic perp of the ideal I.
See www.findstat.org/DyckPaths/NakayamaAlgebras for the definition of Loewy length and Nakayama algebras associated to Dyck paths.
Created
Jun 21, 2019 at 21:46 by Rene Marczinzik
Updated
Jun 22, 2019 at 09:12 by Rene Marczinzik