Identifier
- St001440: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[1]=>0
[2]=>0
[1,1]=>1
[3]=>0
[2,1]=>1
[1,1,1]=>0
[4]=>0
[3,1]=>1
[2,2]=>0
[2,1,1]=>1
[1,1,1,1]=>0
[5]=>0
[4,1]=>1
[3,2]=>1
[3,1,1]=>1
[2,2,1]=>1
[2,1,1,1]=>1
[1,1,1,1,1]=>0
[6]=>0
[5,1]=>1
[4,2]=>1
[4,1,1]=>2
[3,3]=>1
[3,2,1]=>3
[3,1,1,1]=>1
[2,2,2]=>0
[2,2,1,1]=>2
[2,1,1,1,1]=>1
[1,1,1,1,1,1]=>0
[7]=>0
[6,1]=>1
[5,2]=>2
[5,1,1]=>2
[4,3]=>2
[4,2,1]=>5
[4,1,1,1]=>3
[3,3,1]=>3
[3,2,2]=>3
[3,2,1,1]=>5
[3,1,1,1,1]=>2
[2,2,2,1]=>2
[2,2,1,1,1]=>2
[2,1,1,1,1,1]=>1
[1,1,1,1,1,1,1]=>0
[8]=>0
[7,1]=>1
[6,2]=>2
[6,1,1]=>3
[5,3]=>4
[5,2,1]=>8
[5,1,1,1]=>4
[4,4]=>1
[4,3,1]=>9
[4,2,2]=>6
[4,2,1,1]=>12
[4,1,1,1,1]=>4
[3,3,2]=>6
[3,3,1,1]=>6
[3,2,2,1]=>9
[3,2,1,1,1]=>8
[3,1,1,1,1,1]=>3
[2,2,2,2]=>1
[2,2,2,1,1]=>4
[2,2,1,1,1,1]=>2
[2,1,1,1,1,1,1]=>1
[1,1,1,1,1,1,1,1]=>0
[9]=>0
[8,1]=>1
[7,2]=>3
[7,1,1]=>3
[6,3]=>5
[6,2,1]=>12
[6,1,1,1]=>6
[5,4]=>5
[5,3,1]=>18
[5,2,2]=>13
[5,2,1,1]=>21
[5,1,1,1,1]=>8
[4,4,1]=>9
[4,3,2]=>19
[4,3,1,1]=>24
[4,2,2,1]=>24
[4,2,1,1,1]=>21
[4,1,1,1,1,1]=>6
[3,3,3]=>4
[3,3,2,1]=>19
[3,3,1,1,1]=>13
[3,2,2,2]=>9
[3,2,2,1,1]=>18
[3,2,1,1,1,1]=>12
[3,1,1,1,1,1,1]=>3
[2,2,2,2,1]=>5
[2,2,2,1,1,1]=>5
[2,2,1,1,1,1,1]=>3
[2,1,1,1,1,1,1,1]=>1
[1,1,1,1,1,1,1,1,1]=>0
[10]=>0
[9,1]=>1
[8,2]=>3
[8,1,1]=>4
[7,3]=>8
[7,2,1]=>16
[7,1,1,1]=>8
[6,4]=>8
[6,3,1]=>32
[6,2,2]=>21
[6,2,1,1]=>36
[6,1,1,1,1]=>12
[5,5]=>5
[5,4,1]=>29
[5,3,2]=>46
[5,3,1,1]=>55
[5,2,2,1]=>53
[5,2,1,1,1]=>45
[5,1,1,1,1,1]=>13
[4,4,2]=>23
[4,4,1,1]=>32
[4,3,3]=>22
[4,3,2,1]=>77
[4,3,1,1,1]=>52
[4,2,2,2]=>28
[4,2,2,1,1]=>58
[4,2,1,1,1,1]=>34
[4,1,1,1,1,1,1]=>9
[3,3,3,1]=>20
[3,3,2,2]=>27
[3,3,2,1,1]=>44
[3,3,1,1,1,1]=>24
[3,2,2,2,1]=>29
[3,2,2,1,1,1]=>31
[3,2,1,1,1,1,1]=>16
[3,1,1,1,1,1,1,1]=>3
[2,2,2,2,2]=>3
[2,2,2,2,1,1]=>10
[2,2,2,1,1,1,1]=>7
[2,2,1,1,1,1,1,1]=>4
[2,1,1,1,1,1,1,1,1]=>1
[1,1,1,1,1,1,1,1,1,1]=>0
[5,4,2]=>90
[5,4,1,1]=>105
[5,3,3]=>60
[5,3,2,1]=>210
[5,3,1,1,1]=>140
[5,2,2,2]=>75
[5,2,2,1,1]=>140
[4,4,3]=>42
[4,4,2,1]=>120
[4,4,1,1,1]=>75
[4,3,3,1]=>108
[4,3,2,2]=>120
[4,3,2,1,1]=>210
[4,2,2,2,1]=>105
[3,3,3,2]=>42
[3,3,3,1,1]=>60
[3,3,2,2,1]=>90
[6,4,2]=>219
[5,4,3]=>177
[5,4,2,1]=>481
[5,4,1,1,1]=>294
[5,3,3,1]=>344
[5,3,2,2]=>375
[5,3,2,1,1]=>640
[5,2,2,2,1]=>294
[4,4,3,1]=>250
[4,4,2,2]=>214
[4,4,2,1,1]=>375
[4,3,3,2]=>250
[4,3,3,1,1]=>344
[4,3,2,2,1]=>481
[3,3,3,2,1]=>177
[3,3,2,2,1,1]=>219
[5,4,3,1]=>1155
[5,4,2,2]=>990
[5,4,2,1,1]=>1650
[5,3,3,2]=>891
[5,3,3,1,1]=>1232
[5,3,2,2,1]=>1650
[4,4,3,2]=>660
[4,4,3,1,1]=>891
[4,4,2,2,1]=>990
[4,3,3,2,1]=>1155
[5,4,3,2]=>3432
[5,4,3,1,1]=>4576
[5,4,2,2,1]=>4903
[5,3,3,2,1]=>4576
[4,4,3,2,1]=>3432
[5,4,3,2,1]=>19522
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition.
References
[1] Ahlbach, C., Swanson, J. P. Cyclic sieving, necklaces, and branching rules related to Thrall's problem arXiv:1808.06043
Code
def statistic(P): n = P.size() return sum(Integer(1) for T in StandardTableaux(P) if T.standard_major_index() % n == 1)
Created
Jul 02, 2019 at 14:58 by Martin Rubey
Updated
Jul 02, 2019 at 22:27 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!