edit this statistic or download as text // json
Identifier
Values
=>
Cc0005;cc-rep
[1,0]=>1 [1,0,1,0]=>2 [1,1,0,0]=>2 [1,0,1,0,1,0]=>2 [1,0,1,1,0,0]=>2 [1,1,0,0,1,0]=>2 [1,1,0,1,0,0]=>3 [1,1,1,0,0,0]=>3 [1,0,1,0,1,0,1,0]=>2 [1,0,1,0,1,1,0,0]=>2 [1,0,1,1,0,0,1,0]=>2 [1,0,1,1,0,1,0,0]=>3 [1,0,1,1,1,0,0,0]=>3 [1,1,0,0,1,0,1,0]=>2 [1,1,0,0,1,1,0,0]=>2 [1,1,0,1,0,0,1,0]=>3 [1,1,0,1,0,1,0,0]=>3 [1,1,0,1,1,0,0,0]=>3 [1,1,1,0,0,0,1,0]=>3 [1,1,1,0,0,1,0,0]=>3 [1,1,1,0,1,0,0,0]=>4 [1,1,1,1,0,0,0,0]=>4 [1,0,1,0,1,0,1,0,1,0]=>2 [1,0,1,0,1,0,1,1,0,0]=>2 [1,0,1,0,1,1,0,0,1,0]=>2 [1,0,1,0,1,1,0,1,0,0]=>3 [1,0,1,0,1,1,1,0,0,0]=>3 [1,0,1,1,0,0,1,0,1,0]=>2 [1,0,1,1,0,0,1,1,0,0]=>2 [1,0,1,1,0,1,0,0,1,0]=>3 [1,0,1,1,0,1,0,1,0,0]=>3 [1,0,1,1,0,1,1,0,0,0]=>3 [1,0,1,1,1,0,0,0,1,0]=>3 [1,0,1,1,1,0,0,1,0,0]=>3 [1,0,1,1,1,0,1,0,0,0]=>4 [1,0,1,1,1,1,0,0,0,0]=>4 [1,1,0,0,1,0,1,0,1,0]=>2 [1,1,0,0,1,0,1,1,0,0]=>2 [1,1,0,0,1,1,0,0,1,0]=>2 [1,1,0,0,1,1,0,1,0,0]=>3 [1,1,0,0,1,1,1,0,0,0]=>3 [1,1,0,1,0,0,1,0,1,0]=>3 [1,1,0,1,0,0,1,1,0,0]=>3 [1,1,0,1,0,1,0,0,1,0]=>3 [1,1,0,1,0,1,0,1,0,0]=>3 [1,1,0,1,0,1,1,0,0,0]=>3 [1,1,0,1,1,0,0,0,1,0]=>3 [1,1,0,1,1,0,0,1,0,0]=>3 [1,1,0,1,1,0,1,0,0,0]=>4 [1,1,0,1,1,1,0,0,0,0]=>4 [1,1,1,0,0,0,1,0,1,0]=>3 [1,1,1,0,0,0,1,1,0,0]=>3 [1,1,1,0,0,1,0,0,1,0]=>3 [1,1,1,0,0,1,0,1,0,0]=>3 [1,1,1,0,0,1,1,0,0,0]=>3 [1,1,1,0,1,0,0,0,1,0]=>4 [1,1,1,0,1,0,0,1,0,0]=>4 [1,1,1,0,1,0,1,0,0,0]=>4 [1,1,1,0,1,1,0,0,0,0]=>4 [1,1,1,1,0,0,0,0,1,0]=>4 [1,1,1,1,0,0,0,1,0,0]=>4 [1,1,1,1,0,0,1,0,0,0]=>4 [1,1,1,1,0,1,0,0,0,0]=>5 [1,1,1,1,1,0,0,0,0,0]=>5
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path.
Code



DeclareOperation("loewylengthtauA",[IsList]);

InstallMethod(loewylengthtauA, "for a representation of a quiver", [IsList],0,function(LIST)

local M,N,R1,U1,R2,U2,A,L,i,j,W,d,WW,n,l,LL,C,T;

A:=LIST[1];
C:=AlgebraAsModuleOverEnvelopingAlgebra(A);
T:=DTr(C);
return(LoewyLength(T));
end);


Created
Mar 11, 2020 at 23:09 by Rene Marczinzik
Updated
Mar 11, 2020 at 23:09 by Rene Marczinzik