Identifier
- St001562: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[1]=>1
[2]=>1
[1,1]=>4
[3]=>1
[2,1]=>6
[1,1,1]=>27
[4]=>1
[3,1]=>8
[2,2]=>9
[2,1,1]=>54
[1,1,1,1]=>256
[5]=>1
[4,1]=>10
[3,2]=>12
[3,1,1]=>90
[2,2,1]=>108
[2,1,1,1]=>640
[1,1,1,1,1]=>3125
[6]=>1
[5,1]=>12
[4,2]=>15
[4,1,1]=>135
[3,3]=>16
[3,2,1]=>180
[3,1,1,1]=>1280
[2,2,2]=>216
[2,2,1,1]=>1600
[2,1,1,1,1]=>9375
[1,1,1,1,1,1]=>46656
[7]=>1
[6,1]=>14
[5,2]=>18
[5,1,1]=>189
[4,3]=>20
[4,2,1]=>270
[4,1,1,1]=>2240
[3,3,1]=>300
[3,2,2]=>360
[3,2,1,1]=>3200
[3,1,1,1,1]=>21875
[2,2,2,1]=>4000
[2,2,1,1,1]=>28125
[2,1,1,1,1,1]=>163296
[1,1,1,1,1,1,1]=>823543
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The value of the complete homogeneous symmetric function evaluated at 1.
The statistic is $h_\lambda(x_1,\dotsc,x_k)$ evaluated at $x_1=x_2=\dotsb=x_k$,
where $\lambda$ has $k$ parts.
The statistic is $h_\lambda(x_1,\dotsc,x_k)$ evaluated at $x_1=x_2=\dotsb=x_k$,
where $\lambda$ has $k$ parts.
References
[1] Stanley, R. P. Enumerative combinatorics. Vol. 2 MathSciNet:1676282
Created
Jul 11, 2020 at 10:05 by Per Alexandersson
Updated
Jul 11, 2020 at 10:05 by Per Alexandersson
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!