edit this statistic or download as text // json
Identifier
Values
=>
Cc0002;cc-rep
[1]=>1 [2]=>1 [1,1]=>3 [3]=>1 [2,1]=>6 [1,1,1]=>10 [4]=>1 [3,1]=>6 [2,2]=>3 [2,1,1]=>30 [1,1,1,1]=>35 [5]=>1 [4,1]=>6 [3,2]=>6 [3,1,1]=>30 [2,2,1]=>30 [2,1,1,1]=>140 [1,1,1,1,1]=>126 [6]=>1 [5,1]=>6 [4,2]=>6 [4,1,1]=>30 [3,3]=>3 [3,2,1]=>60 [3,1,1,1]=>140 [2,2,2]=>10 [2,2,1,1]=>210 [2,1,1,1,1]=>630 [1,1,1,1,1,1]=>462 [7]=>1 [6,1]=>6 [5,2]=>6 [5,1,1]=>30 [4,3]=>6 [4,2,1]=>60 [4,1,1,1]=>140 [3,3,1]=>30 [3,2,2]=>30 [3,2,1,1]=>420 [3,1,1,1,1]=>630 [2,2,2,1]=>140 [2,2,1,1,1]=>1260 [2,1,1,1,1,1]=>2772 [1,1,1,1,1,1,1]=>1716
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The value of the forgotten symmetric functions when all variables set to 1.
Let $f_\lambda(x)$ denote the forgotten symmetric functions.
Then the statistic associated with $\lambda$, where $\lambda$ has $\ell$ parts,
is $f_\lambda(1,1,\dotsc,1)$ where there are $\ell$ variables substituted by $1$.
References
[1] Stanley, R. P. Enumerative combinatorics. Vol. 2 MathSciNet:1676282
Created
Jul 11, 2020 at 09:56 by Per Alexandersson
Updated
Jul 11, 2020 at 09:56 by Per Alexandersson