Identifier
- St001568: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[2]=>1
[1,1]=>2
[3]=>1
[2,1]=>1
[1,1,1]=>2
[4]=>1
[3,1]=>1
[2,2]=>1
[2,1,1]=>2
[1,1,1,1]=>2
[5]=>1
[4,1]=>1
[3,2]=>1
[3,1,1]=>2
[2,2,1]=>1
[2,1,1,1]=>2
[1,1,1,1,1]=>2
[6]=>1
[5,1]=>1
[4,2]=>1
[4,1,1]=>2
[3,3]=>1
[3,2,1]=>1
[3,1,1,1]=>2
[2,2,2]=>1
[2,2,1,1]=>3
[2,1,1,1,1]=>2
[1,1,1,1,1,1]=>2
[7]=>1
[6,1]=>1
[5,2]=>1
[5,1,1]=>2
[4,3]=>1
[4,2,1]=>1
[4,1,1,1]=>2
[3,3,1]=>1
[3,2,2]=>1
[3,2,1,1]=>2
[3,1,1,1,1]=>2
[2,2,2,1]=>1
[2,2,1,1,1]=>3
[2,1,1,1,1,1]=>2
[1,1,1,1,1,1,1]=>2
[8]=>1
[7,1]=>1
[6,2]=>1
[6,1,1]=>2
[5,3]=>1
[5,2,1]=>1
[5,1,1,1]=>2
[4,4]=>1
[4,3,1]=>1
[4,2,2]=>1
[4,2,1,1]=>2
[4,1,1,1,1]=>2
[3,3,2]=>1
[3,3,1,1]=>2
[3,2,2,1]=>1
[3,2,1,1,1]=>2
[3,1,1,1,1,1]=>2
[2,2,2,2]=>1
[2,2,2,1,1]=>3
[2,2,1,1,1,1]=>3
[2,1,1,1,1,1,1]=>2
[1,1,1,1,1,1,1,1]=>2
[9]=>1
[8,1]=>1
[7,2]=>1
[7,1,1]=>2
[6,3]=>1
[6,2,1]=>1
[6,1,1,1]=>2
[5,4]=>1
[5,3,1]=>1
[5,2,2]=>1
[5,2,1,1]=>2
[5,1,1,1,1]=>2
[4,4,1]=>1
[4,3,2]=>1
[4,3,1,1]=>2
[4,2,2,1]=>1
[4,2,1,1,1]=>2
[4,1,1,1,1,1]=>2
[3,3,3]=>1
[3,3,2,1]=>1
[3,3,1,1,1]=>2
[3,2,2,2]=>1
[3,2,2,1,1]=>3
[3,2,1,1,1,1]=>2
[3,1,1,1,1,1,1]=>2
[2,2,2,2,1]=>1
[2,2,2,1,1,1]=>3
[2,2,1,1,1,1,1]=>3
[2,1,1,1,1,1,1,1]=>2
[1,1,1,1,1,1,1,1,1]=>2
[10]=>1
[9,1]=>1
[8,2]=>1
[8,1,1]=>2
[7,3]=>1
[7,2,1]=>1
[7,1,1,1]=>2
[6,4]=>1
[6,3,1]=>1
[6,2,2]=>1
[6,2,1,1]=>2
[6,1,1,1,1]=>2
[5,5]=>1
[5,4,1]=>1
[5,3,2]=>1
[5,3,1,1]=>2
[5,2,2,1]=>1
[5,2,1,1,1]=>2
[5,1,1,1,1,1]=>2
[4,4,2]=>1
[4,4,1,1]=>2
[4,3,3]=>1
[4,3,2,1]=>1
[4,3,1,1,1]=>2
[4,2,2,2]=>1
[4,2,2,1,1]=>3
[4,2,1,1,1,1]=>2
[4,1,1,1,1,1,1]=>2
[3,3,3,1]=>1
[3,3,2,2]=>1
[3,3,2,1,1]=>2
[3,3,1,1,1,1]=>2
[3,2,2,2,1]=>1
[3,2,2,1,1,1]=>3
[3,2,1,1,1,1,1]=>2
[3,1,1,1,1,1,1,1]=>2
[2,2,2,2,2]=>1
[2,2,2,2,1,1]=>3
[2,2,2,1,1,1,1]=>3
[2,2,1,1,1,1,1,1]=>3
[2,1,1,1,1,1,1,1,1]=>2
[1,1,1,1,1,1,1,1,1,1]=>2
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The smallest positive integer that does not appear twice in the partition.
References
[1] Ballantine, C., Merca, M. Combinatorial Proof of the Minimal Excludant Theorem arXiv:1908.06789
Code
def statistic(x): x = list(x) for i in range(1, x[0]+2): if x.count(i) < 2: return i
Created
Jul 15, 2020 at 15:01 by Martin Rubey
Updated
Jul 15, 2020 at 15:01 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!