Values
=>
Cc0029;cc-rep
([],1)=>1
([(0,1)],2)=>1
([(0,2),(2,1)],3)=>1
([(0,1),(0,2),(1,3),(2,3)],4)=>2
([(0,3),(2,1),(3,2)],4)=>1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)=>2
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)=>2
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)=>2
([(0,4),(2,3),(3,1),(4,2)],5)=>1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)=>2
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)=>2
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)=>2
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)=>2
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)=>2
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)=>2
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)=>2
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)=>2
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)=>2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)=>2
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)=>2
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)=>2
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)=>2
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)=>2
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)=>1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)=>2
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)=>2
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)=>2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)=>2
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)=>2
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)=>2
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)=>2
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)=>2
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)=>2
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)=>2
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)=>2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)=>2
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)=>2
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)=>2
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)=>2
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)=>2
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)=>2
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)=>2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)=>2
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)=>2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)=>2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)=>2
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)=>2
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)=>2
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)=>2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)=>2
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)=>2
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)=>2
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)=>2
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)=>2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)=>2
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)=>2
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)=>2
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)=>2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)=>2
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)=>2
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)=>2
([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)=>2
([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7)=>2
([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)=>2
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)=>2
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)=>2
([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)=>2
([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)=>2
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)=>2
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)=>2
([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)=>2
([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)=>2
([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7)=>2
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)=>2
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)=>1
([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)=>2
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)=>2
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)=>2
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The breadth of a lattice.
The breadth of a lattice is the least integer $b$ such that any join $x_1\vee x_2\vee\cdots\vee x_n$, with $n > b$, can be expressed as a join over a proper subset of $\{x_1,x_2,\ldots,x_n\}$.
The breadth of a lattice is the least integer $b$ such that any join $x_1\vee x_2\vee\cdots\vee x_n$, with $n > b$, can be expressed as a join over a proper subset of $\{x_1,x_2,\ldots,x_n\}$.
References
[1] Kelly, D., Rival, I. Crowns, fences, and dismantlable lattices MathSciNet:0417003
Code
def statistic(L): return L.breadth()
Created
Oct 01, 2020 at 09:30 by Henri Mühle
Updated
Feb 08, 2021 at 23:21 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!