Identifier
- St001627: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[1]=>1
[2]=>1
[1,1]=>1
[3]=>2
[2,1]=>3
[1,1,1]=>4
[4]=>6
[3,1]=>11
[2,2]=>16
[2,1,1]=>23
[1,1,1,1]=>38
[5]=>21
[4,1]=>58
[3,2]=>98
[3,1,1]=>162
[2,2,1]=>230
[2,1,1,1]=>402
[1,1,1,1,1]=>728
[6]=>112
[5,1]=>407
[4,2]=>879
[4,1,1]=>1549
[3,3]=>1087
[3,2,1]=>2812
[3,1,1,1]=>5204
[2,2,2]=>4065
[2,2,1,1]=>7490
[2,1,1,1,1]=>14080
[1,1,1,1,1,1]=>26704
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of coloured connected graphs such that the multiplicities of colours are given by a partition.
In particular, the value on the partition $(n)$ is the number of unlabelled connected graphs on $n$ vertices, oeis:A001349, whereas the value on the partition $(1^n)$ is the number of labelled connected graphs oeis:A001187.
In particular, the value on the partition $(n)$ is the number of unlabelled connected graphs on $n$ vertices, oeis:A001349, whereas the value on the partition $(1^n)$ is the number of labelled connected graphs oeis:A001187.
Code
def statistic(mu): h = SymmetricFunctions(QQ).h() F = (species.SimpleGraphSpecies().cycle_index_series()-1).logarithm() return F.coefficient(mu.size()).scalar(h(mu))
Created
Oct 01, 2020 at 22:08 by Martin Rubey
Updated
Oct 01, 2020 at 22:08 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!